References
- S. Abramovich, S. Banic, and M. Matic, Superquadratic functions in several variables, J. Math. Anal. Appl. 327 (2007), no. 2, 1444-1460 https://doi.org/10.1016/j.jmaa.2006.05.014
- S. Abramovich, G. Jameson, and G. Sinnamon, Refining Jensen's Inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47 (95) (2004), no. 1-2, 3-14
- S. Abramovich, G. Jameson, and G. Sinnamon, Inequalities for averages of convex and superquadratic functions, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 91
- D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993
- J. E. Pecaric, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992
- G. Sinnamon, Refining the Holder and Minkowski inequalities, J. Inequal. Appl. 6 (2001), no. 6, 633-640 https://doi.org/10.1155/S1025583401000388
Cited by
- TIME SCALES INTEGRAL INEQUALITIES FOR SUPERQUADRATIC FUNCTIONS vol.50, pp.3, 2013, https://doi.org/10.4134/JKMS.2013.50.3.465
- Fejer and Hermite–Hadamard type inequalities for superquadratic functions vol.344, pp.2, 2008, https://doi.org/10.1016/j.jmaa.2008.03.051
- Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals vol.2014, 2014, https://doi.org/10.1155/2014/851271
- A variant of the Jensen–Mercer operator inequality for superquadratic functions vol.51, pp.9-10, 2010, https://doi.org/10.1016/j.mcm.2010.01.005
- Regularity of weakly subquadratic functions vol.382, pp.2, 2011, https://doi.org/10.1016/j.jmaa.2011.04.073
- Fejér and Hermite–Hadamard type results for H-invex functions with applications pp.1572-9281, 2019, https://doi.org/10.1007/s11117-018-0623-0
- Generalized convex functions on normal decomposition systems pp.1420-8903, 2019, https://doi.org/10.1007/s00010-018-0623-y
- Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces vol.0, pp.0, 2019, https://doi.org/10.1515/apam-2018-0154