DOI QR코드

DOI QR Code

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon (INFORMATION THCHNOLOGY MANPOWER DEVELOPMENT PROGRAM KYUNGPOOK NATIONAL UNIVERSITY)
  • Published : 2008.02.29

Abstract

Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition. Graduate Texts in Mathematics, 13. Springer-Verlag, New York, 1992
  2. G. Azumaya, F. Mbuntum, and K. Varadarajan, On M-projective and M-injective modules, Pacific J. Math. 59 (1975), no. 1, 9-16 https://doi.org/10.2140/pjm.1975.59.9
  3. Y. Baba and K. Oshiro, Artinian Rings and Related Topics, Lecture Note
  4. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488 https://doi.org/10.2307/1993568
  5. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, Birkhauser Boston, Boston, 2007
  6. N. V. Dung, N. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, With the collaboration of John Clark and N. Vanaja. Pitman Research Notes in Mathematics Series, 313. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994
  7. M. Harada, Factor Categories with Applications to Direct Decomposition of Modules, Lecture Notes in Pure and Applied Mathematics, 88. Marcel Dekker, Inc., New York, 1983
  8. D. Keskin and A. Harmanci, A relative version of the lifting property of modules, Algebra Colloq. 11 (2004), no. 3, 361-370
  9. Y. Kuratomi and C. Chang, Lifting modules over right perfect rings, Comm. Algebra 35 (2007), no. 10, 3103-3109 https://doi.org/10.1080/00927870701405132
  10. S. R. Lopez-Permouth, K. Oshiro, and S. T. Rizvi, On the relative (quasi-)continuity of modules, Comm. Algebra 26 (1998), no. 11, 3497-3510 https://doi.org/10.1080/00927879808826355
  11. S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Mathematical Society Lecture Note Series, 147. Cambridge University Press, Cambridge, 1990
  12. N. Orhan and D. K. Tutuncu, Characterizations of lifting modules in terms of cojective modules and the class of B(M,X), Internat. J. Math. 16 (2005), no. 6, 647-660 https://doi.org/10.1142/S0129167X05003041
  13. K. Oshiro, Semiperfect modules and quasisemiperfect modules, Osaka J. Math. 20 (1983), no. 2, 337-372
  14. K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), no. 3, 310-338 https://doi.org/10.14492/hokmj/1381757705
  15. R. B. Warfield, A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465
  16. R. Wisbauer, Foundations of Module and Ring Theory, A handbook for study and research. Revised and translated from the 1988 German edition. Algebra, Logic and Applications, 3. Gordon and Breach Science Publishers, Philadelphia, PA, 1991

Cited by

  1. Rings Whose Nonsingular Modules Have Projective Covers vol.68, pp.1, 2016, https://doi.org/10.1007/s11253-016-1204-7
  2. ON THE DECOMPOSITION OF EXTENDING LIFTING MODULES vol.46, pp.6, 2009, https://doi.org/10.4134/BKMS.2009.46.6.1069
  3. Characterizations of Several Modules Relative to the Class of B(M, X) vol.53, pp.1, 2013, https://doi.org/10.5666/KMJ.2013.53.1.37