Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • 발행 : 2008.03.31

초록

In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.

키워드

참고문헌

  1. A. F. Naguib, N. Seshadri, and A. R. Calderbank, 'Increasing data rate over wireless channels,' IEEE Signal Process. Mag., vol. 17, Issue 3, pp. 76-92, May 2000 https://doi.org/10.1109/79.841731
  2. A. Wittneben, 'Base station modulation diversity for digital simulcast,' in Proc. IEEE VTC, 1991, pp. 848-853
  3. N. Seshadri and J. H. Winters, 'Two signaling schemes for improving the error performance of frequency-division-duplex (FDD) transmission systems using transmitter antenna diversity,' in Proc. IEEE VTC, 1993, pp. 508-511
  4. J. Guey, M. P. Fitz, M. R. Bell, and W. Kuo, 'Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,' IEEE Trans. Commun., vol. 47, no. 4, pp. 527-537, Apr. 1999 https://doi.org/10.1109/26.764926
  5. G. J. Foschini and M. J. Gans, 'On limits of wireless communications in a fading environment when using multiple antennas,' Wireless Pers. Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998 https://doi.org/10.1023/A:1008889222784
  6. I. E. Telatar, 'Capacity of multi-antenna Gaussian channels,' Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov./Dec. 1999 https://doi.org/10.1002/ett.4460100604
  7. V. Tarokh, N. Seshadri, and A. R. Calderbank, 'Space-time codes for high data rate wireless communication: Performance criterion and code construction,' IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998 https://doi.org/10.1109/18.661517
  8. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, 'Space-time block codes from orthogonal designs,' IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456-1467, July 1999 https://doi.org/10.1109/18.771146
  9. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, 'Space-time block coding for wireless communications: Performance results,' IEEE J. Sel. Areas Commun., vol. 17, no. 3, pp. 451-460, Mar. 1999 https://doi.org/10.1109/49.753730
  10. H. Jafakhani, 'A quasi-orthogonal space-time block code,' IEEE Trans. Commun., vol. 49, no. 1, pp. 1-4, Jan. 2001 https://doi.org/10.1109/26.898239
  11. S. M. Alamouti, 'A simple transmit diversity technique for wireless communications,' IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998 https://doi.org/10.1109/49.730453
  12. H.-J. Su and E. Geraniotis, 'Space-time turbo codes with full antenna diversity,' IEEE Trans. Commun., vol. 49, no. 1, pp. 47-57, Jan. 2001 https://doi.org/10.1109/26.898250
  13. Y. Liu, M. P. Fitz, and O. Y. Takeshita, 'Full rate space-time turbo codes,' IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 969-980, May 2001 https://doi.org/10.1109/49.924880
  14. A. Stefanov and T.M. Duman, 'Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: System model, decoding approaches, and practical considerations,' IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 958-968, May 2001 https://doi.org/10.1109/49.924879
  15. B. M. Hochwald andW. Sweldens, 'Differential unitary space-time modulation,' IEEE Trans. Commun., vol. 48, no. 12, pp. 2041-2052, Dec. 2000 https://doi.org/10.1109/26.891215
  16. B. L. Hughes, 'Differential space-time modulation,' IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567-2578, Nov. 2000 https://doi.org/10.1109/18.887864
  17. V. Tarokh and H. Jafarkhani, 'A differential detection scheme for transmit diversity,' IEEE J. Sel. Areas Commun., vol. 18, pp. 1169-1174, July 2000 https://doi.org/10.1109/49.857917
  18. H. Jafarkhani and V. Tarokh, 'Multiple transmit antenna differential detection from generalized orthogonal designs,' IEEE Trans. Inf. Theory, vol. 47, pp. 2626-2631, Sept. 2001 https://doi.org/10.1109/18.945280
  19. H. Li and J. Li, 'Differential and coherent decorrelating multiuser receivers for space-time-coded CDMA systems,' IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2529-2537, Oct. 2002 https://doi.org/10.1109/TSP.2002.803346
  20. R. Schober and L. H.-J. Lampe, 'Noncoherent receivers for differential space-time modulation,' IEEE Trans. Commun., vol. 50, no. 5, pp. 768- 777, May 2002 https://doi.org/10.1109/TCOMM.2002.1006558
  21. C. Ling, K. H. Li, and A. C. Kot, 'Noncoherent sequence detection of differential space-time modulation,' IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2727-2734, Oct. 2003
  22. L. H.-J. Lampe and R. Schober, 'Bit-interleaved coded differential spacetime modulation,' IEEE Trans. Commun., vol. 50, no. 9, pp. 1429-1439, Sept. 2002 https://doi.org/10.1109/TCOMM.2002.802557
  23. A. Steiner, M. Peleg, and S. Shamai, 'Iterative decoding ofspace-time differentially coded unitary matrix modulation,' IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2385-2395, Oct. 2002 https://doi.org/10.1109/TSP.2002.803348
  24. L. H.-J. Lampe, R. Schober, and R. F. H. Fischer, 'Coded differential space-time modulation for flat fading channels,' IEEE Trans. Wireless Commun., vol. 2 no. 3, pp. 582-590, May 2003 https://doi.org/10.1109/TWC.2003.811192
  25. C. Schlegel and A. Grant, 'Differential space-time turbo codes,' IEEE Trans. Inf. Theory, vol. 49, no. 9, pp. 2298-2306, Sept. 2003 https://doi.org/10.1109/TIT.2003.815818
  26. P. Hoeher and J. Lodge, 'Turbo DPSK: Iterative differential PSK demodulation and channel decoding,' IEEE Trans. Commun., vol. 47, no. 6, pp. 837-843, June 1999 https://doi.org/10.1109/26.771340
  27. P. Vanichchanunt, C. Sritiapetch, S. Nakpeerayuth, and L.Wuttisittikulkij, 'APP demodulator for turbo coded multiple symbol differential detection under correlated Rayleigh fading channels,' in Proc. IEEE GLOBECOM, 2004, pp. 2578-2582
  28. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, 'Optimal decoding of linear codes for minimizing symbol error rate,' IEEE Trans. Inf. Theory, vol. 20, pp. 284-287, Mar. 1974
  29. A. S. Barbulescu and S. S. Pietrobon, 'Terminating the trellis of turbocodes in the same state,' IEE Electron. Letters, vol. 31, no. 1, pp. 22-23, Jan. 1995 https://doi.org/10.1049/el:19950008
  30. P. Vanichchanunt, P. Sangwongngam, S. Nakpeerayuth, and L. Wuttisittikulkij, 'APP demodulator for turbo coded differential unitary space-time modulation,' in Proc. IEEE ICC, 2005, pp. 2906-2910
  31. I. D. Marsland and P. T. Mathiopoulos, 'Multiple differential detection of parallel concatenated convolutional (turbo) codes in correlated fast Rayleigh fading,' IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 265- 275, Feb. 1998 https://doi.org/10.1109/49.661115