Abstract
The construction of ontology defines as complicated semantic relations needs precise and expert skills. For the well defined ontology in real applications, plenty of information of instances for ontology classes is very critical. In this study, crawling algorithm which extracts the fittest topic from the Web overflowing over by a great number of documents has been focused and developed. Proposed crawling algorithm made a progress to gather documents at high speed by extracting topic-specific Link using URL patterns. And topic fitness of Link block text has been represented by fuzzy sets which will improve a precision of the focused crawler.
복잡한 의미관계를 정의하는 온톨로지를 구축하는 일은 매우 정밀하고 전문적인 작업이다. 잘 구축된 온톨로지를 응용 시스템에 활용하기 위해서는 온톨로지 클래스에 대한 많은 인스턴스 정보를 구축해야 한다. 본 논문은 온톨로지 인스턴스 정보 추출을 위하여 방대한 양의 웹 문서로부터 주어진 주제에 적합한 문서만을 추출하는 주제 중심 웹 문서 수집 알고리즘을 제안하고, 이 알고리즘을 바탕으로 문서 수집 시스템을 개발한다. 제안하는 문서 수집 알고리즘은 URL의 패턴을 이용하여 주제에 적합한 링크만을 추출함으로써 빠른 속도의 문서 수집을 가능하게 한다. 또한 링크 블록 텍스트에 대한 퍼지집합으로 표현된 주제 적합도는 문서의 주제 관련성을 지능적으로 판단하여 주제 중심 문서 수집의 정확도를 향상시킨다.