DOI QR코드

DOI QR Code

RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과

Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering

  • 김금채 (인제대학교 나노시스템공학과 나노매뉴팩쳐링연구소) ;
  • 이지수 (인제대학교 나노시스템공학과 나노매뉴팩쳐링연구소) ;
  • 이수경 (인제대학교 나노시스템공학과 나노매뉴팩쳐링연구소) ;
  • 김도현 (인제대학교 나노시스템공학과 나노매뉴팩쳐링연구소) ;
  • 이성희 (연세대학교 재료공학과) ;
  • 문주호 (연세대학교 재료공학과) ;
  • 전민현 (인제대학교 나노시스템공학과 나노매뉴팩쳐링연구소)
  • Kim, G.C. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, J.S. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, S.K. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, D.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, S.H. (Department of Materials Science and Engineering, Yonsei Univeristy) ;
  • Moon, J.H. (Department of Materials Science and Engineering, Yonsei Univeristy) ;
  • Jeon, M.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 발행 : 2008.01.30

초록

유리기판 위에 약 500 nm 의 두께로 성장된 ZnO층의 구조적, 광학적, 전기적 성질에 미치는 갈륨도핑의 영향에 대하여 연구 하였다. 다결정 ZnO 와 GZO 층은 상온에서 radio frequency magnetron sputtering 법을 사용하여 성장되었다. 투과전자현미경 (TEM)과 x-ray 회절분석 (XRD)에 의하면, 갈륨이 도핑된 ZnO 박막의 결정성은 ZnO에 비하여 향상되었고 (002)방향을 따라 우선성장 되었음이 발견되었다. GZO 박막의 투과도는 가시광 영역에서 ZnO 박막에 비해 약 10% 정도 향상된 것으로 나타났다. PL 분석에 따르면, NBE emission 세기와 DL emission 세기의 비는 GZO 와 ZnO의 경우 각각 2.65:1 과 1.27:1로 나타났다. GZO와 ZnO의 비저항은 각각 1.27과 1.61 $\Omega{\cdot}cm$로서 GZO의 전기전도도가 높았다. GZO 와 ZnO의 캐리어농도는 각각 $10^{18}$ and $10^{20}cm^2$/Vs으로 측정되었다. 본 실험결과 따르면, Ga 도핑으로 인해 ZnO 박막의 전기적, 광학적, 구조적 특성이 향상되었음을 알 수 있었다.

We present the effect of Ga-doping on the electrical, structural and optical properties of ZnO layers with a thickness of ${\sim}500nm$ deposited on glass substrates. Polycrystalline ZnO and Ga-doped ZnO (GZO) layers were deposited by radio frequency (rf) magnetron sputtering at room temperature. Based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, the crystalline quality of Ga-doped ZnO film was improved and GZO film has a preferred orientation along with the (002) crystal direction. The transmittance of the GZO film was enhanced by 10% in the visible region from that of the ZnO film. From photoluminescence (PL) data, the ratio of intensity of near band edge (NBE) emission to deep level (DL) emission was as high as 2.65:1 and 1.27:1 in the GZO and ZnO films, respectively. The res istivities of GZO and ZnO films were measured to be 1.27 and 1.61 $\Omega{\cdot}cm$, respectively. The carrier concentrations of ZnO and GZO film were approximately 1018 and 1020 $cm^2$/Vs, respectively. Based on our experimental results, the Ga-doping improves the electrical, structural and optical properties of ZnO film with potential application.

키워드

참고문헌

  1. K. Ellmer, J. Phys. D. Appl. Phys. 34, 3097 (2001) https://doi.org/10.1088/0022-3727/34/21/301
  2. T. Minami, MRS Bull. 25, 38 (2000)
  3. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch and T. Yao, Appl. Phys. Lett. 77, 3761 (2000) https://doi.org/10.1063/1.1331089
  4. R. G. Gordon, MRS Bull. 25, 52 (2000)
  5. J. H and. G. Gordon, J. Appl. Phys. 72 , 5381 (1992) https://doi.org/10.1063/1.351977
  6. H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Film (Institute of Physics Publ, Bristol, 1995)
  7. D. C. Kim, B. H. Kong and H. K Cho, phys. stat. sol. (b) 244, 1512 (2007) https://doi.org/10.1002/pssb.200675121
  8. H. P. Klug and L. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (2nd ed.), (John Wiley and Sons, NewYork 1974)
  9. Q. P. wang, D. H Zhang and H. L Ma, Applied Surface Science 220, 12 (2003) https://doi.org/10.1016/S0169-4332(03)00751-7
  10. K. SHIMAKAWA and T. ITOH, Jpn. J. Appl. Phys. 46, L577 (2007) https://doi.org/10.1143/JJAP.46.L577
  11. X. Yu, J. Ma, F. Ji and Y. Qang, Thin Solid films 483 (2005)
  12. S. A. Studenikin, N. Golego and M. Cocivera, J .Appl. Phys. 84, 2287 (1998) https://doi.org/10.1063/1.368295
  13. X. H. Wang, D. X. Zhao, Y. C. Liu, J. Y. Zhang, Y. M. Lu and X. W. Fan, J. Cryst. Growth 263, 316 (2004) https://doi.org/10.1016/j.jcrysgro.2003.11.063
  14. T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985) https://doi.org/10.1143/JJAP.24.L781
  15. O. F. Schirmer and D. Zwingel, Solid State Commun. 8, 1559 (1970) https://doi.org/10.1016/0038-1098(70)90608-3
  16. D. M. Bagnell, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto and T. Yao, J. Cryst. Growth 184/185, 605 (1998) https://doi.org/10.1016/S0022-0248(98)80127-9
  17. K. Vandheusen, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. N. Gnage, J. Appl. Phys. 79, 7983 (1996) https://doi.org/10.1063/1.362349
  18. Y. Ma, G. Du, J. Yin, T. Yang and Y. Zhang, Semicond. Sci. Technol. 20, 1198 (2005) https://doi.org/10.1088/0268-1242/20/12/009
  19. J. CHO, J. NAH, M. S OH, J. H. SONG, K. H YOON, H. J. JUNG and W. K CHOI, Jpn. J. Appl. Phys. 40, L1040 (2001) https://doi.org/10.1143/JJAP.40.L1040