DOI QR코드

DOI QR Code

The Pancyclic Property of Pyramid Graphs

피라미드 그래프의 범사이클 특성

  • 장정환 (부산외국어대학교 디지털미디어학부)
  • Published : 2008.04.30

Abstract

In this paper, we analyze a cycle property embedded in pyramid graphs. We prove that it is always possible to construct diverse cycles of all lengths from 3 to ($4^N-1$)/3 by applying series of cycle expansion operations to the pyramid graph of height N. This means that the pyramid graph has the pancyclic property.

본 논문에서는 피라미드 그래프 내에 내재된 사이클 특성을 분석한다. 높이 N의 피라미드 그래프에 연속적인 사이클 확장 연산을 적용함으로써 길이 3이상 ($4^N-1$)/3 까지에 해당하는 모든 길이의 다양한 사이클들을 생성할 수 있음을 증명한다. 이는 피라미드 그래프가 범사이클 특성을 보유하고 있음을 의미한다.

Keywords

References

  1. F. Berman and L. Snyder, “On mapping parallel algorithms into parallel architectures,“ J. of Parallel and Distrib. Comput., Vol.4, pp.439-458, 1987 https://doi.org/10.1016/0743-7315(87)90018-9
  2. B. Monien and H. Sudborough, “Embedding one interconnection network in another,” Computing Supplement, Vol.7, pp.257-282, 1990 https://doi.org/10.1007/978-3-7091-9076-0_13
  3. Y. Saad and M. H. Schultz, “Topological properties of hypercubes,” IEEE Trans. on Comput., Vol.37, pp.867-872, 1988 https://doi.org/10.1109/12.2234
  4. F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes,” Morgan Kaufmann Pub., CA., 1992
  5. R. Miller and Q. F. Stout, “Data Movement Techniques for the Pyramid Computer,” SIAM J. on Comput., Vol.16, No.1, pp.38-60, 1987 https://doi.org/10.1137/0216004
  6. Q. F. Stout, “Mapping Vision Algorithms to Parallel Architectures,” Proc. of the IEEE, pp.982-995, 1988 https://doi.org/10.1109/5.5970
  7. D. M. C. Ip, C. K. Y. Ng, L. K. L. Pun, M. Hamdi, and I. Ahmad, “Embedding Pyramids into 3D Meshes,” Proc. of 1993 Int'l Conf. on Paral. and Distrib. Sys., pp.348-352, 1993
  8. K. -L. Chung and Y. -W. Chen, “Mapping Pyramids into 3-D Meshes,” Nordic J. of Computing, Vol.2, No.3, pp.326-337, 1995
  9. 장정환, “피라미드의 3-차원 메쉬로의 신장율 개선 임 베딩”, 정보처리학회논문지A, Vol.10-A, No.6, pp.627- 634, 2003
  10. 장정환, “피라미드 그래프의 헤밀톤 특성”, 정보처리학 회논문지A, Vol.13-A, No.3, pp.253-260, 2006 https://doi.org/10.3745/KIPSTA.2006.13A.3.253
  11. http://mathworld.wolfram.com/PancyclicGraph.html
  12. J. -H. Park, H. -S. Lim and H. -C. Kim, “Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements,” Theoretical Computer Science, 377(1-3), pp.170-180, 2007 https://doi.org/10.1016/j.tcs.2007.02.029
  13. Y. C. Tseng, D. K. Panda and T. H. Lai, “A Trip-based Multicasting Model in Wormhole-routed Networks with Virtual Channels,” IEEE Trans. on Paral. and Distrib. Sys., Vol.7, No.2, pp.138-150, 1996 https://doi.org/10.1109/71.485503