Video Quality Metric Using One-Dimensional Histograms of Motion Vectors

움직임 벡터의 1차원 히스토그램을 이용한 비디오 화질 평가 척도

  • Han, Ho-Sung (Department of Electronic Engineering, Sogang University) ;
  • Kim, Dong-O (Department of Electronic Engineering, Sogang University) ;
  • Park, Bae-Hong (Department of Electronic Engineering, Sogang University) ;
  • Sim, Dong-Gyu (Department of Computer Engineering, Kwangwoon University)
  • Published : 2008.03.25

Abstract

This paper proposes a novel reduced-reference assessment method for video quality assessment, in which one-dimensional (1-D) histograms of motion vectors (MVs) are used as features of videos. The proposed method is more efficient than the conventional methods in view of computation time, because the proposed quality metric decodes MVs directly from video stream in the parsing process instead of reconstructing the distorted video at the receiver. Moreover, in view of data size, the propose method is efficient because a sender transmits 1-D histograms of MVs accumulated over whole input video sequences. Here, we use 1-D histograms of MVs accumulated over the whole video sequences, which is different from the conventional methods that assessed each image independently. For testing the similarity between histograms, we use histogram intersection and histogram difference methods. We compare the proposed method with the conventional methods for 52 video clips, which are coded under varying bit rate, image size, and frame rate. Experimental results show that the proposed method is more efficient than the conventional methods and that the proposed method is more similar to the mean opinion score (MOS) than conventional algorithms.

본 논문에서는 비디오 화질 평가를 위해 움직임 벡터의 1차원 히스토그램을 비디오의 특징으로 이용하는 새로운 reduced-reference (RR) 평가 방법을 제안하였다. 제안한 화질 평가 방법은 수신단에서 열화 비디오를 재구성하는 대신 비디오 스트림 (video stream)의 파싱 (parsing) 과정에서 움직임 벡터를 직접 얻을 수 있기 때문에 수행시간 면에서 기존의 방법들에 비해 효율적이다. 또한 송신단에서는 입력 비디오 영상 전체에 대해 누적된 움직임 벡터의 1차원 히스토그램을 보내기 때문에 데이터량 측면에서도 효율적이다. 여기서, 기존의 방법들이 영상 한 장씩에 대해서 평가를 했던 것과 달리 제안한 방법에서는 전체 영상에 대해 누적된 움직임 벡터의 1차원 히스토그램을 사용하였다. 히스토그램의 유사도를 측정하기 위해 히스토그램 인터섹션 (histogram intersection)과 히스토그램 파이 (histogram difference)을 사용하였다. 여러 가지 비트율 (bit rate), 영상크기, 프레임율 (frame rate)로 코딩된 비디오 클립 52개에 대해 제안한 방법과 기존의 방법들을 비교하였고, 제안한 방법의 효율성을 기존 방법들과의 비교 실험을 통해 보였으며, 실험 결과를 통해, 제안한 방법이 기존의 방법들보다 mean opinion score (MOS)와 유사함을 보였다.

Keywords

References

  1. ITU-T Recommendation J.144, 'Objective perceptual video quality measurement techniques for digital cable television in the presence of a full reference,' International Telecommunication Union, Mar. 2004
  2. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 'Image quality assessment: From error visibility to structural similarity,' IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004 https://doi.org/10.1109/TIP.2003.819861
  3. G.-H. Chen, C.-L. Yang, and S.-L. Xie, 'Gradient-based structural similarity for image quality assessment,' in Proc. International Conf. Image Processing, pp. 2929-2932, Atlanta, GA, USA, Oct. 2006
  4. C. S. Won, 'Using edge histogram descriptor of MPEG-7 for the measurement of image quality and modifications,' in Proc. SPIE Multimedia Systems and Applications IX, vol. 6391, pp. 1-8, Boston, MA, USA, Oct. 2006
  5. Z. Wang and E. P. Simoncelli, 'Reduced- reference image quality assessment using a wavelet-domain natural image statistic model,' in Proc. SPIE Human Vision and Electronic Imaging X, vol. 5666, pp. 149-159, San Jose, CA, USA, Jan. 2005
  6. S. Susstrunk and S. Winkler, 'Color image quality on the Internet,' in Proc. IS&T/SPIE Electronic Imaging 2004: Internet Imaging V, vol. 5304, pp. 118-131, San Jose, CA, USA, Jan. 2004
  7. D. Hasler and S. Susstrunk, 'Measuring colorfulness in natural images,' in Proc. IS&T/SPIE Electronic Imaging 2003: Human Vision and Electronic Imaging VIII, vol. 5007, pp. 87-95, San Jose, CA, USA, Jan. 2003
  8. ITU-T Recommendation BT.500-11, 'Method- ology for the subjective assessment of the quality of television pictures,' International Telecommunication Union, Jan. 2002
  9. 이선오, 김현오, 심동규, '디지털 비디오에 대한 주관적 화질 측정과 분석,' 제19회 신호처리합동학술대회논문집, 제19권, 제1호, 215쪽, 안산, 2006년 9월
  10. Z. Wang, L. Lu, and A. C. Bovik, 'Video quality assessment based on structural distortion measurement,' Signal Processing: Image Communication, vol. 19, no. 2, pp. 121-132, Feb. 2004 https://doi.org/10.1016/S0923-5965(03)00076-6