Abstract
The ordinary least squares regression method of Haseman and Elston(1972) is most widely used in genetic linkage studies for continuous traits of sib pairs. Kruglyak and Lander(1995) suggested a statistic which appears to be a nonparametric counterpart to the Haseman and Elston(1972)'s regression method, but in fact these two methods are quite different. In this paper the relationships between these two methods are described and will be compared by simulation studies. One of the characteristics of the sib-pair linkage study is that the explanatory variable has only three different values and thus dependent variable is heavily replicated in each value of the explanatory variable. We propose a weighted least squares regression method which is more appropriate to this situation and the efficiency of the weighted regression in genetic linkage study was explored with normal and non-normal simulated continuous traits data. Simulation studies demonstrated that the weighted regression is more powerful than other tests.
형제 쌍(sibpair)의 연속형 형질(continuous traits) 자료를 이용한 유전연관성 검정 법(linkage test)으로서 Haseman과 Elston (1972)의 최소제곱(ordinary least square, OLS) 회귀분석법이 주로 사용된다. 비모수적 방법으로서 제시된 Kruglyak과 Lander (1995)의 검정통계량은 Haseman과 Elston (1972)의 방법에 대응되는 방법처럼 보이지만 실제로는 매우 다르다. 본 논문에서는 Kruglyak와 Lander (1995)의 검정통계량과 Haseman과 Elston (1972)의 검정통계량의 관계를 설명하고 모의실험으로 두 검정통계량의 검정력을 비교한다. 유전연관성에 사용되는 형제 자료의 특징은 한정된 설명변수의 값에 매우 많은 자료가 반복(replicated)되었다는 점이며, 이러한 반복 자료에 더욱 적절한 가중 회귀분석법을 제안한다. 가중 회귀분석법의 효율성을 정규분포 또는 정규분포가 아닌 연속형 형질 모의실험 자료로 알아본 결과 형제 쌍 자료의 유전연관성 검정에서 가중 회귀분석법이 다른 검정법들보다도 검정력이 높음을 확인하였다.