DOI QR코드

DOI QR Code

Biodegradation and Saccharification of Wood Chips of Pinus strobus and Liriodendron tulipifera by White Rot Fungi

  • Hwang, Soon-Seok (Division of Life Sciences, Kangwon National University) ;
  • Lee, Sung-Jae (Gangwon Forest Development Research Institute) ;
  • Kim, Hee-Kyu (Gangwon Forest Development Research Institute) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kyu-Joong (Department of Biology, Kangnung National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, Kangwon National University)
  • Published : 2008.11.30

Abstract

Degradation and glucose production from wood chips of white pine (Pinus strobus) and tulip tree (Liriodendron tulipifera) by several white rot fungi were investigated. The highest weight losses from 4 g of wood chips of P. strobus and L. tulipifera by the fungal degradation on yeast extract-malt extract-glucose agar medium were 38% of Irpex lacteus and 93.7% of Trametes versicolor MrP 1 after 90 days, respectively. When 4 g of wood chips of P. strobus and L. tulipifera biodegraded for 30 days were treated with cellulase, glucose was recovered at the highest values of 106 mg/g degraded wood by I. lacteus and 450 mg/g degraded wood by T. versicolor. The weight loss of 10 g of wood chip of L. tulipifera by T. versicolor on the nutrient non-added agar under the nonsterile conditions was 35% during 7 weeks of incubation, and the cumulative amount of glucose produced during this period was 239 mg without cellulase treatment. The activities of ligninolytic enzymes (lignin peroxidase, manganese peroxidase, and laccase) of fungi tested did not show a high correlation with degradation of the wood chips and subsequent glucose formation. These results suggest that the selection of proper wood species and fungal strain and optimization of glucose recovery are all necessary for the fungal pretreatment of woody biomass as a carbon substrate.

Keywords

References

  1. Anonymous. 2006. Defining biomass: Which types of biomass will count as renewable energy sources? Refocus 7: 58-59
  2. Cara, C., E. Ruiz, I. Ballesteros, M. J. Negro, and E. Castro. 2006. Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem. 41: 423-429 https://doi.org/10.1016/j.procbio.2005.07.007
  3. Cara, C., E. Ruiz, J. M. Oliva, F. Saez, and E. Castro. 2008. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour. Technol. 99: 1869-1876 https://doi.org/10.1016/j.biortech.2007.03.037
  4. Cara, C., E. Ruiz, M. Ballesteros, P. Manzanares, M. Jose Negro, and E. Castro. 2008. Production of fuel ethanol from steamexplosion pretreated olive tree pruning. Fuel 87: 692-700 https://doi.org/10.1016/j.fuel.2007.05.008
  5. Fernandes, L., C. Loguercio-Leite, E. Esposito, and M. M. Reis. 2005. In vitro wood decay of Eucalyptus grandis by the basidiomycete fungus Phellinus flavomarginatus. Int. Biodeter. Biodegr. ad 55: 187-193 https://doi.org/10.1016/j.ibiod.2004.12.001
  6. Ferraz, A., A. M. Cordova, and A. Machuca. 2003. Wood biodegradation and enzyme production by Ceriporiopsis subverispora during solid-state fermentation of Eucalyptus grandis. Enz. Microb. Technol. 32: 59-65 https://doi.org/10.1016/S0141-0229(02)00267-3
  7. Guerra, A., R. Mendonca, and A. Ferraz. 2003. Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enz. Microb. Technol. 33: 12-18 https://doi.org/10.1016/S0141-0229(03)00099-1
  8. Hwang, S.-S., H. Choi, and H.-G. Song. 2008. Biodegradation of endocrine-disrupting phthalates by Pleurotus ostreatus. J. Microbiol. Biotechnol. 18: 767-772
  9. International Energy Agency. 2005. Energy Balances of OECD Countries: 2002/2003. OECD Energy, Vol. 2005, No. 8. pp. i-351. OECD, Paris, France
  10. Kumad, R. C., A. Singh, and K.-E. Eriksson. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls, pp. 45-125. In T. Scheper (ed.), Advances in Biochemical Engineering/Biotechnology, Vol. 57. Springer-Verlag. Berlin
  11. Kumar, A. G., G. Sekaran, and S. Krishnamoorthy. 2006. Solid state fermentation of Acras zapota lignocellulose by Phanerochaete chrysosporium. Bioresour. Technol. 97: 1521-1528 https://doi.org/10.1016/j.biortech.2005.06.015
  12. Lee, J. W. 1997. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1-24 https://doi.org/10.1016/S0168-1656(97)00073-4
  13. Lee, J.-W., K.-S. Gwak, S.-I. Kim, M. Kim, D.-H. Choi, and I.- G. Choi. 2007. Characterization of xylanase from Lentinus edodes M290 cultured on waste mushroom logs. J. Microbiol. Biotechnol. 17: 1811-1817
  14. Lee, J.-W., K.-S. Gwak, J.-Y. Park, D.-H. Choi, M. Kwon, and I.-G. Choi. 2007. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol. 45: 485-491
  15. Machuca, A. and A. Ferraz. 2001. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enz. Microb. Technol. 29: 386-391 https://doi.org/10.1016/S0141-0229(01)00417-3
  16. Martinez, A. T., M. Speranza, F. J. Ruiz-Due,as, P. Ferreira, S. Camarero, F. Guillen, M. J. Martinez, A. Gutierrez, and J. C. del Rio. 2005. Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8: 195-204
  17. Mckendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 83: 37-46 https://doi.org/10.1016/S0960-8524(01)00118-3
  18. Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 1355-1361
  19. Song, H.-G. 1999. Comparison of pyrene biodegradation by white rot fungi. World J. Microbiol. Biotechnol. 15: 669-672 https://doi.org/10.1023/A:1008927424034
  20. Svobodova, K., A. Majcherczyk, E. Novotny, and U. Kues. 2008. Implication of mycelium-associated laccase from I. lacteus in the decolorization of synthetic dyes. Bioresour. Technol. 99: 463-471 https://doi.org/10.1016/j.biortech.2007.01.019
  21. Wen, Z., W. Liao, and S. Chen. 2004. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour. Technol. 91: 31-39 https://doi.org/10.1016/S0960-8524(03)00166-4
  22. Yamada, T. and S. Ito. 1993. Chemical defense responses of wilt-resistant pine species, Pinus strobus and P. taeda, against Bursaphelenchus xylophilus infection. Ann. Phytopath. Soc. Japan 59: 666-672 https://doi.org/10.3186/jjphytopath.59.666
  23. Yang, J. S., J. R. Ni, H. L. Yuan, and E. Wang. 2007. Biodegradation of three different wood chips by Pseudomonas sp. PKE 117. Int. Biodet. Biodegr. ad 60: 90-95 https://doi.org/10.1016/j.ibiod.2006.12.006

Cited by

  1. Functional Characteristics and Diversity of a Novel Lignocelluloses Degrading Composite Microbial System with High Xylanase Activity vol.20, pp.2, 2008, https://doi.org/10.4014/jmb.0906.06035
  2. Generation of a large-scale genomic resource for functional and comparative genomics in Liriodendron tulipifera L. vol.7, pp.5, 2008, https://doi.org/10.1007/s11295-011-0386-2
  3. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa vol.107, pp.None, 2012, https://doi.org/10.1016/j.biortech.2011.12.116
  4. LtuCAD1 Is a Cinnamyl Alcohol Dehydrogenase Ortholog Involved in Lignin Biosynthesis in Liriodendron tulipifera L., a Basal Angiosperm Timber Species vol.31, pp.5, 2008, https://doi.org/10.1007/s11105-013-0578-z
  5. Screening and optimization of parameters affecting fungal pretreatment of oil palm empty fruit bunch (EFB) by experimental design vol.5, pp.4, 2008, https://doi.org/10.1007/s40095-014-0136-y
  6. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review vol.90, pp.3, 2008, https://doi.org/10.1002/jctb.4544
  7. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review vol.90, pp.3, 2008, https://doi.org/10.1002/jctb.4544
  8. Reducing biomass recalcitrance by heterologous expression of a bacterial peroxidase in tobacco ( Nicotiana benthamiana ) vol.7, pp.None, 2008, https://doi.org/10.1038/s41598-017-16909-x