References
- Alexander, B., S. Leach, and W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbiol. 133: 1171-1179
- Asakawa, S., H. Morii, M. Akagawa-Matsushita, Y. Koga, and K. Hayano. 1993. Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNADNA hybridization among M. arboriphilicus strains. Int. J. Syst. Bacteriol. 43: 683-686 https://doi.org/10.1099/00207713-43-4-683
- Bijmans, M. F. M., 2008. Sulfate reduction under acidic conditions for selective metal recovery. PhD thesis. ISBN978-90-8504-925-8, Wageningen University, Wageningen
- Bijmans, M. F. M., T. W. T. Peeters, P. N. L. Lens, and C. J. N. Buisman. 2008. High rate sulfate reduction at pH 6 in a pHauxostat submerged membrane bioreactor fed with formate. Water Res. 42: 2439-2448 https://doi.org/10.1016/j.watres.2008.01.025
- Buisman, C. J. N. and G. Lettinga. 1990. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Res. 24: 313-319 https://doi.org/10.1016/0043-1354(90)90006-R
- Christensen, B., M. Laake, and T. Lien. 1996. Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res. 30: 1617-1624 https://doi.org/10.1016/0043-1354(96)00049-8
- Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington
- Cole, J. R., B. Chai, T. L. Marsh, R. J. Farris, Q. Wang, S. A. Kulam, et al. 2003. The ribosomal database project (RDP-II): Previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31: 442-443 https://doi.org/10.1093/nar/gkg039
- Colleran, E., S. Finnegan, and P. Lens. 1995. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek (Historical Archive) 67: 29-46 https://doi.org/10.1007/BF00872194
- Dopson, M. and E. B. Lindstrom. 2004. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite. Microb. Ecol. 48: 19-28 https://doi.org/10.1007/s00248-003-2028-1
- Elliott, P., S. Ragusa, and D. Catcheside. 1998. Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res. 32: 3724-3730 https://doi.org/10.1016/S0043-1354(98)00144-4
- Esposito, G., J. Weijma, F. Pirozzi, and P. N. L. Lens. 2003. Effect of the sludge retention time on H2 utilization in a sulphate reducing gas-lift reactor. Process Biochem. 39: 491-498 https://doi.org/10.1016/S0032-9592(03)00131-6
- Gibert, O., J. D. Pablo, J. L. Cortina, and C. Ayora. 2003. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Tech. Biotechnol. 78: 489-496 https://doi.org/10.1002/jctb.814
- Huisman, J. L., G. Schouten, and C. Schultz. 2006. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83: 106-113 https://doi.org/10.1016/j.hydromet.2006.03.017
- Icgen, B. and S. Harrison. 2006. Exposure to sulfide causes populations shifts in sulfate-reducing consortia. Res. Microbiol. 157: 784-791 https://doi.org/10.1016/j.resmic.2006.04.004
- Janssen, A. J. H., G. Lettinga, and A. de Keizer. 1999. Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: Colloidal and interfacial aspects of biologically produced sulphur particles. Colloid Surface Physicochem. Eng. Aspect. 151: 389-397 https://doi.org/10.1016/S0927-7757(98)00507-X
- Johnson, D. B. and K. B. Hallberg. 2005. Acid mine drainage remediation options: A review. Sci. Total Environ. 338: 3-14 https://doi.org/10.1016/j.scitotenv.2004.09.002
- Jong, T. and D. L. Parry. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571 https://doi.org/10.1016/j.watres.2006.05.001
- Kaksonen, A. H., J. J. Plumb, P. D. Franzmann, and J. A. Puhakka. 2004. Simple organic electron donors support diverse sulfate-reducing communities in fluidized-bed reactors treating acidic metal- and sulfate-containing wastewater. FEMS Microbiol. Ecol. 47: 279-289 https://doi.org/10.1016/S0168-6496(03)00284-8
- Kaksonen, A. H., M.-L. Riekkola-Vanhanen, and J. A. Puhakka. 2003. Optimization of metal sulphide precipitation in fluidizedbed treatment of acidic wastewater. Water Res. 37: 255-266 https://doi.org/10.1016/S0043-1354(02)00267-1
- Kawazuishi, K. and J. M. Prausnitz. 1987. Correlation of vaporliquid equilibria for the system ammonia-carbon dioxide-water. Ind. Eng. Chem. Res. 26: 1482-1484 https://doi.org/10.1021/ie00067a036
- Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acids Res. 32: 1363-1371 https://doi.org/10.1093/nar/gkh293
- Madigan, M., J. Martinko, and J. Parker. 2000. Biology of Microorganisms. Prentice Hall Inc., New Yersey
- Moosa, S. and S. T. L. Harrison. 2006. Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage. Hydrometallurgy 83: 214-222 https://doi.org/10.1016/j.hydromet.2006.03.026
- Morales, T. A., M. Dopson, R. Athar, and R. B. Herbert. 2005. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Biotechnol. Bioeng. 90: 543-551 https://doi.org/10.1002/bit.20421
- O'Flaherty, V., T. Mahony, R. O'Kennedy, and E. Colleran. 1998. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphatereducing bacteria. Process Biochem. 33: 555-569 https://doi.org/10.1016/S0032-9592(98)00018-1
- Okabe, S., P. H. Nielsen, W. L. Jones, and W. G. Characklis. 1995. Sulfide product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res. 29: 571-579 https://doi.org/10.1016/0043-1354(94)00177-9
- Ouattara, A. S., B. K. C. Patel, J. L. Cayol, N. Cuzin, A. S. Traore, and J. L. Garcia. 1999. Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int. J. Syst. Bacteriol. 49: 639-643 https://doi.org/10.1099/00207713-49-2-639
- Reis, M. A. M., J. S. Almeida, P. C. Lemos, and M. J. T. Carrondo. 1992. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol. Bioeng. 40: 593-600 https://doi.org/10.1002/bit.260400506
- Reis, M. A. M., P. C. Lemos, J. S. Almeida, and M. J. T. Carrondo. 1990. Influence of produced acetic acid on growth of sulfate reducing bacteria. Biotechnol. Lett. 12: 145-148 https://doi.org/10.1007/BF01022432
-
Sipma, J., R. J. W. Meulepas, S. N. Parshina, A. J. M. Stams, G. Lettinga, and P. N. L. Lens. 2004. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (
$55{\circ}C$ ) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Appl. Microbiol. Biotechnol. 64: 421-428 https://doi.org/10.1007/s00253-003-1430-4 - Sorokin, D. Y., T. P. Tourova, E. M. Spiridonova, F. A. Rainey, and G. Muyzer. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol. 55: 1069-1075 https://doi.org/10.1099/ijs.0.63415-0
- Speece, R. E. 1983. Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Tech. 17: 416-427 https://doi.org/10.1021/es00115a001
- Stams, A., J. Van Dijk, C. Dijkema, and C. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114-1119
- Tabak, H. H., R. Scharp, J. Burckle, F. K. Kawahara, and R. Govind. 2003. Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14: 423-436 https://doi.org/10.1023/A:1027332902740
- van Houten, R. T., L. W. Hulshoff Pol, and G. Lettinga. 1994. Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng. 44: 586-594 https://doi.org/10.1002/bit.260440505
-
Veeken, A. H. M., L. Akoto, L. W. Hulshoff Pol, and J. Weijma. 2003. Control of the sulfide (
$S^2-$ ) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Res. 37: 3709-3717 https://doi.org/10.1016/S0043-1354(03)00262-8 - Waybrant, K. R., C. J. Ptacek, and D. W. Blowes. 2002. Treatment of mine drainage using permeable reactive barriers: Column experiments. Environ. Sci. Technol. 36: 1349-1356 https://doi.org/10.1021/es010751g
- Weijma, J., C. F. M. Copini, C. J. N. Buisman, and C. E. Schultz. 2002. Biological recovery of metals, sulfur and water in the mining and metallurgical industy, pp. 605-625. In P. N. L. Lens and L. Hulshoff Pol (eds.), Water Recycling and Resource Recovery in Industry: Analysis, Technologies and Implementation. IWA Publishing
-
Weijma, J., F. Gubbels, L. W. Hulshoff Pol, A. J. M. Stams, P. N. L. Lens, and G. Lettinga. 2002. Competition for
$H_2$ between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci. Tech. 45: 75-80 - Weijma, J., A. J. M. Stams, L. W. Hulshoff Pol, and G. Lettinga. 2000. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol. Bioeng. 67: 354-363 https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3<354::AID-BIT12>3.0.CO;2-X
- Widdel, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, pp. 469-586. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons
Cited by
- Selective recovery of nickel over iron from a nickel–iron solution using microbial sulfate reduction in a gas-lift bioreactor vol.43, pp.3, 2008, https://doi.org/10.1016/j.watres.2008.11.023
- The effect of sub-optimal temperature on specific sulfidogenic activity of mesophilic SRB in an H2-fed membrane bioreactor vol.45, pp.3, 2008, https://doi.org/10.1016/j.procbio.2009.10.007
-
Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at
$9^{\circ}C$ vol.20, pp.3, 2008, https://doi.org/10.4014/jmb.0906.06016 - Performance of a sulfidogenic bioreactor and bacterial community shifts under different alkalinity levels vol.101, pp.23, 2008, https://doi.org/10.1016/j.biortech.2010.07.055
- Processing of Arsenopyritic Gold Concentrates by Partial Bio-Oxidation Followed by Bioreduction vol.45, pp.15, 2008, https://doi.org/10.1021/es200676z
- Bio-reduction of elemental sulfur to increase the gold recovery from enargite vol.115, pp.None, 2008, https://doi.org/10.1016/j.hydromet.2012.01.003
- Effect of COD:SO4 2− Ratio, HRT and Linoleic Acid Concentration on Mesophilic Sulfate Reduction: Reactor Performance and Microbial Population Dynamics vol.7, pp.5, 2008, https://doi.org/10.3390/w7052275
- Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid vol.100, pp.19, 2016, https://doi.org/10.1007/s00253-016-7652-z
- Injection of hydrogen gas stimulates acid mine drainage treatment in laboratory‐scale hydroponic root mats vol.16, pp.8, 2008, https://doi.org/10.1002/elsc.201600009
- POTENTIAL OF AUTOCHTHONOUS SULFATE-REDUCING MICROBIAL COMMUNITIES FOR TREATING ACID MINE DRAINAGE IN A BENCH-SCALE SULFIDOGENIC REACTOR vol.36, pp.2, 2008, https://doi.org/10.1590/0104-6632.20190362s20170662
- Sulfur Reduction at Hyperthermoacidophilic Conditions with Mesophilic Anaerobic Sludge as the Inoculum vol.54, pp.22, 2008, https://doi.org/10.1021/acs.est.0c02557
- Biological Sulfate Reduction Using Gaseous Substrates To Treat Acid Mine Drainage vol.6, pp.4, 2008, https://doi.org/10.1007/s40726-020-00160-6