Molecular Cloning and Characterization of a Muscle-Specific Lipase from the Bumblebee Bombus ignitus

  • Hu, Zhigang (College of Natural Resources and Life Science, Dong-A University) ;
  • Wang, Dong (College of Natural Resources and Life Science, Dong-A University) ;
  • Lu, Wei (College of Natural Resources and Life Science, Dong-A University) ;
  • Cui, Zheng (Joint Laboratory between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University) ;
  • Jia, Jing-Ming (Joint Laboratory between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University) ;
  • Yoon, Hyung-Joo (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Sohn, Hung-Dae (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Doh-Hoon (College of Natural Resources and Life Science, Dong-A University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University)
  • Published : 2008.09.30

Abstract

A muscle-specific lipase gene of the bumblebee Bombus ignitus was cloned and characterized. This gene, which we named Bi-Lipase, consists of seven exons encoding 317 amino acid residues. Bi-Lipase possesses all the features of lipases, including GXSXG consensus motif and Ser-Asp-His catalytic triad. Expressed as a 37-kDa polypeptide in baculovirus-infected insect Sf9 cells, recombinant Bi-Lipase showed an optimal pH of 9.0 and exhibited its highest catalytic activity at $40^{\circ}C$. Furthermore, through the addition of tunicamycin to the recombinant virus-infected Sf9 cells, recombinant Bi-Lipase was found to be N-glycosylated. Northern and western blot analyses indicated that Bi-Lipase was expressed in the wing, thorax, and leg muscles. These results show that Bi-Lipase is a muscle-specific lipase, suggesting a possible role of Bi-Lipase in the utilization of lipids for muscular activity in B. ignitus.

Keywords

References

  1. Arrese, E. L. and M. A. Wells (1994) Purification and properties of a phosphorylatable triacylglycerol lipase from the fat body of an insect, Manduca sexta. J. Lipid Res. 35, 1652-1659
  2. Auerswald, L. and G. Gade (2006) Endocrine control of TAG lipase in the fat body of the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol. 36, 759-768 https://doi.org/10.1016/j.ibmb.2006.07.004
  3. Auerswald, L., K. J. Siegert and G. Gade (2005) Activation of triacylglycerol lipase in the fat body of a beetle by adipokinetic hormone. Insect Biochem. Mol. Biol. 35, 461-470 https://doi.org/10.1016/j.ibmb.2005.01.010
  4. Beenakkers, A. M. T., D. J. van der Horst and W. J. A. van Marrewijk (1981) Metabolism during locust flight. Comp. Biochem. Physiol. B 69, 315-312 https://doi.org/10.1016/0305-0491(81)90320-5
  5. Beenakkers, A. M. T., D. J. van der Horst and W. J. A. van Marrewijk (1985) Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 24, 19-67 https://doi.org/10.1016/0163-7827(85)90007-4
  6. Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim and U. Menge (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343, 767-770 https://doi.org/10.1038/343767a0
  7. Bulow, L. and K. Mosbach (1987) The expression in E. coli of a polymeric gene coding for an esters. FEBS Lett. 210, 147-152 https://doi.org/10.1016/0014-5793(87)81325-X
  8. Canavoso, L. E., S. Frede and E. R. Rubiolo (2004) Metabolic pathways for dietary lipids in the midgut of hematophagous Panstrongylus megistus (Hemiptera: Reduviidae). Insect Biochem. Mol. Biol. 34, 845-854 https://doi.org/10.1016/j.ibmb.2004.05.008
  9. Choi, Y. S., Y. M. Choo, K. S. Lee, H. J. Yoon, I. Kim, Y. H. Je, H. D. Sohn and B. R. Jin (2008) Cloning and expression profiling of four antibacterial peptide genes from the bumblebee Bombus ignitus. Comp. Biochem. Physiol. B 150, 141-146 https://doi.org/10.1016/j.cbpb.2008.02.007
  10. Choi, Y. S., K. S. Lee, H. J. Yoon, I. Kim, H. D. Sohn and B. R. Jin (2006) Bombus ignitus Cu,Zn superoxide dismutase (SOD1): cDNA cloning, gene structure, and up-regulation in response to paraquat, temperature stress, or lipopolysaccharide stimulation. Comp. Biochem. Physiol. B 144, 365-371 https://doi.org/10.1016/j.cbpb.2006.03.014
  11. Elbein, A. D. (1984) Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit. Rev. Biochem. 16, 21-49 https://doi.org/10.3109/10409238409102805
  12. Gade, G. and L. Auerswald (2003) Mode of action of neuropeptides from the adipokinetic hormone family. Gen. Comp. Endocrinol. 132, 10-20 https://doi.org/10.1016/S0016-6480(03)00159-X
  13. Gade, G. (2004) Regulation of insect intermediary metabolism and water balance by neuropeptides. Annu. Rev. Entomol. 49, 93-113 https://doi.org/10.1146/annurev.ento.49.061802.123354
  14. Grillo, L. A. M., D. Majerowicz and K. C. Gondim (2007) Lipid metabolism in Rhodnius prolixus (Hemiptera: Reduviidae): Role of a midgut triacylglycerol-lipase. Insect Biochem. Mol. Biol. 37, 579-588 https://doi.org/10.1016/j.ibmb.2007.03.002
  15. Gronke, S., G. Muller, J. Hirsch, S. Fellert, A. Andreou, T. Haase, H. Jackle and R. Kuhnlein (2007) Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol. 5, 1248-1256
  16. Haunerland, N. H. (1997) Transport and utilization of lipids in insect flight muscles. Comp. Biochem. Physiol. B 117, 475-482 https://doi.org/10.1016/S0305-0491(97)00185-5
  17. Hide, W. A., L. Chan and W. H. Li (1992) Structure and evolution of the lipase superfamily. J. Lipid Res. 33, 167-178
  18. Hirata, K., H. L. Dichek, J. A. Cioffi, S. Y. Choi, N. J. Leeper, L. Quintana, G. S. Kronmal, A. D. Cooper and T. Quertermous (1999) Cloning of a unique lipase from endothelial cells extends the lipase gene family. J. Biol. Chem. 274, 14170-14175 https://doi.org/10.1074/jbc.274.20.14170
  19. Je, Y. H., J. H. Chang, J. Y. Choi, J. Y. Roh, B. R. Jin, D. R. O'Reilly and S. K. Kang (2001) A defective viral genome maintained in Escherichia coli for the generation of baculovirus expression vectors. Biotechnol. Lett. 23, 575-582 https://doi.org/10.1023/A:1010301404445
  20. Kerlin, R. L. and S. Hughes (1992) Enzymes in saliva from four parasitic arthropods. Med. Vet. Entomol. 6, 121-126 https://doi.org/10.1111/j.1365-2915.1992.tb00587.x
  21. Kuchler, K., M. Gmachi, M. J. Sippl and G. Kreil (1989) Analysis of the cDNA for phospholipase A2 from honeybee venom glands. Eur. J. Biochem. 184, 249-254 https://doi.org/10.1111/j.1432-1033.1989.tb15014.x
  22. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
  23. Lee, K. S., S. R. Kim, N. S. Park, I. Kim, P. D. Kang, B. H. Sohn, K. H. Choi, S. W. Kang, Y. H. Je, S. M. Lee, H. D. Sohn and B. R. Jin (2005) Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection. Insect Biochem. Mol. Biol. 35, 73-84 https://doi.org/10.1016/j.ibmb.2004.09.008
  24. Nielsen, H., J. Engelbrecht, S. Brunak and G. von Heijne (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6 https://doi.org/10.1093/protein/10.1.1
  25. Pistillo, D., A. Manzi, A. Tino, P. Pilo Boyl, F. Graziani and C. Malva (1998) The Drosophila melanogaster lipase homologs: a gene family with tissue and developmental specific expression. J. Mol. Biol. 276, 877-885 https://doi.org/10.1006/jmbi.1997.1536
  26. Rosetto, M., M. Belardinelli, A. M. Fausto, D. Marchini, G. Bongiorno, M. Maroli and M. Mazzini (2003) A mammalian-like lipase gene is expressed in the female reproductive accessory glands of the sand fly Phlebotomus papatasi (Diptera, Pgychodidae). Insect Mol. Biol. 12, 501-508 https://doi.org/10.1046/j.1365-2583.2003.00436.x
  27. Ruiz, C., F. I. J. Pastor and P. Diaz (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol. Lett. 217, 263-267 https://doi.org/10.1111/j.1574-6968.2002.tb11485.x
  28. Smith, G. M., K. Rothwell, S. L. Wood, S. J. Yeaman and M. Bownes (1994) Specificity and localization of lipolytic activity in adult Drosophila melanogaster. Biochem. J. 304, 775-779 https://doi.org/10.1042/bj3040775
  29. Van Antwerpen, R., K. Salvador, K. Tolman and C. Gentry (1998) Uptake of lipids by developing oocytes of the hawkmoth Manduca sexta. The possible role of lipoprotein lipase. Insect Biochem. Mol. Biol. 28, 399-408 https://doi.org/10.1016/S0965-1748(98)00012-5
  30. Van der Horst, D. J. (2003) Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp. Biochem. Physiol. B 136, 217-226 https://doi.org/10.1016/S1096-4959(03)00151-9
  31. Van Heusden, M. C. (1993) Characterization and identification of a lipoprotein lipase from Manduca sexta flight muscle. Insect Biochem. Mol. Biol. 23, 785-792 https://doi.org/10.1016/0965-1748(93)90066-2
  32. Wei, Y. D., S. J. Lee, K. S. Lee, Z. Z. Gui, H. J. Yoon, I. Kim, T. H. Je, X. Guo, H. D. Sohn and B. R. Jin (2005) N-glycosylation is necessary for enzymatic activity of a beetle (Apriona germari) cellulase. Biochem. Biophys. Res. Commun. 329, 331-336 https://doi.org/10.1016/j.bbrc.2005.01.131
  33. Winkler, F. K., A. D'Arcy and W. Hunziker (1990) Structure of human pancreatic lipase. Nature 343, 771-774 https://doi.org/10.1038/343771a0
  34. Yoon, H. J., S. E. Kim and Y. S. Kim (2002) Temperature and humidity favorable for colony development of the indoor-reared bumblebee, Bombus ignitus. Appl. Entomol. Zool. 37, 419-423 https://doi.org/10.1303/aez.2002.419
  35. Yoon, H. J., S. E. Kim, Y. S. Kim and S. B. Lee (2004) Colony developmental characteristics of the bumblebee queen, Bombus ignitus by the first oviposition day. Int. J. Indust. Entomol. 8, 139-143