Expression of Active Antibacterial Bumblebee Abaecin in Escherichia coli Cells

  • Kim, Seong-Ryul (Department of Agricultural Biology, NIAST, Rural Development Administration) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, NIAST, Rural Development Administration) ;
  • Yoon, Hyung-Joo (Department of Agricultural Biology, NIAST, Rural Development Administration) ;
  • Park, Kwan-Ho (Department of Agricultural Biology, NIAST, Rural Development Administration) ;
  • Hong, Mee-Yeon (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Kee-Young (Department of Agricultural Biology, NIAST, Rural Development Administration) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
  • Published : 2008.09.30

Abstract

We previously isolated and cloned a cDNA of abaecin from the Bombus ignitus. In an effort to produce a large amount of soluble abaecin at low cost, we successfully expressed the peptide in Escherichia coli that are highly sensitive to its mature form. For this, we fused the peptide encoding 39 amino acids of mature B. ignitus abaecin to the thioredoxin gene together with a C-terminal 6xHis tag. An enterokinase cleavage site was introduced between the 6xHis tag and mature abaecin to allow final release of the recombinant peptide. A high yield of 9.6 mg soluble fusion protein from 200 ml of bacterial culture was purified by $Ni^{2+}$-charged His-Bind resin affinity column, and 1.4 mg of pure active recombinant abaecin was readily obtained by enterokinase cleavage, followed by affinity chromatograph. The molecular mass of recombinant abaecin peptide was determined by Tricin-SDS-PAGE analysis. The recombinant abaecin exhibited antibacterial activity against Gram-negative bacteria.

Keywords

References

  1. Casteels, P., C. Ampe, L. Riviere, J. V. Damme, C. Elicone, M. Fleming, F. Jacobs and P. Tempst (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386 https://doi.org/10.1111/j.1432-1033.1990.tb15315.x
  2. Choi, Y. S., Y. M. Choo, K. S. Lee, H. J. Yoon, I. Kim, Y. H. Je, H. D. Shon and B. R. Jin (2008) Cloning and expression profiling of four antibacterial peptide genes form the bumblebee Bombus ignitus. Comp. Biochem. Physiol. B 150, 141-146 https://doi.org/10.1016/j.cbpb.2008.02.007
  3. Hwang, S. W., J. H. Lee, H. B. Park, S. H. Pyo, J. E. So, H. S. Lee, S. S. Hong and J. H. Kim (2001) A simple method for the purification of an antimicrobial peptide in recombinant Escherichia coli. Mol. Biotechnol. 18, 193-198 https://doi.org/10.1385/MB:18:3:193
  4. Kim, S. R., E. M. Lee, H. J. Yoon, Y. S. Choi, E. Y. Yun, J. S. Hwang, B. R. Jin, I. H. Lee and I. Kim (2007) Antibacterial activity of peptides synthesized based on the Bombus ignitus abaecin, a novel proline-rich antimicrobial peptide. Int. J. Indust. Entomol. 14, 147-150
  5. Lehrer, R. I., M. Rosenman, S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-173 https://doi.org/10.1016/0022-1759(91)90021-7
  6. Li, Y., X. Li and G. Wang (2006) Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr. Purif. 47, 498-505 https://doi.org/10.1016/j.pep.2005.10.022
  7. Rees, J. A., M. Moniatte and P. Bulet (1997) Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem. Mol. Biol. 27, 413-422 https://doi.org/10.1016/S0965-1748(97)00013-1
  8. Shlyapnikov, Y. M., Y. A. Andreev, S. A. Kozlov, A. A. Alexander and A. Vassilevski (2008) Bacterial production of latarcin 2a, a potent antimicrobial peptide form spider venom. Protein Expr. Purif. 60, 89-95 https://doi.org/10.1016/j.pep.2008.03.011
  9. Skosyrev, V. S., N. V. Rudenko, A. V. Yakhnin, V. E. Zagranichny, L. I. Popova, M. V. Zakharov, A. Y. Gorokhovatsky and L. M. Vinokurov (2003) EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expr. Purif. 27, 55-62 https://doi.org/10.1016/S1046-5928(02)00595-8
  10. Vassilevski, A. A., S. A. Kozlov and E. V. Grishin (2008) Antimicrobial peptide precursor structures suggest effective production strategies. Recent Patents Inflamm. Allergy Drug Discov. 2, 58-63
  11. Xu, X., F. Jin, X. Yu, S. Ji, J. Wang, H. Cheng, C. Wang and W. Zhang (2007) Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expr. Purif. 53, 55-62
  12. Zhang, L., T. Falla, M. Wu, S. Fidai, J. Burian, W. Kay and R. E. Hancock (1998) Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem. Biophys. Res. Commun. 247, 674-680 https://doi.org/10.1006/bbrc.1998.8848