Disaccharide Synthesis using E. coli UDP-glucose regeneration system

대장균의 UDP-glucose regeneration 시스템을 이용한 이당류 합성에 관한 연구

  • Oh, Jeong-Seok (School of Chemical and Biomolecular Engineering, Georgia Institute of Technology)
  • 오정석 (조지아 공대 화학생명공학과)
  • Published : 2008.12.31

Abstract

UDP-glucose regeneration system using metabolic engineeringis unique and efficient strategy for oligosaccharide synthesis. To exploit the efficient UDP-glucose regeneration system, we introduced four enzymes, which would be important in partitioning the flux of UDP regenerationsuch as UDP-glucose pyrophosphorylase, UDP-Kinase gene, UDP-galactose 4-epimerase, and $\beta$-1, 4-galactasyltrasnsferase, into E. coli AD202. To determine the optimal expression level for UDP-regeneration, LacNAc concentration was compared depending on IPTG concentration. 0.5 mM IPTG induction showed the higher oligosaccharides synthesis. Using metabolic engineering under optimal IPTG induction, LacNAc synthesis of AD202/pQNGLU increased until 16 h and showed the 1.34 mM. This concentration is 10 times higher than that of control strain at same reaction time. Lactose of AD202/pQNGLU showed the maximum synthesis of 0.39 mM at 16 h and showed the 2.6 times higher than that of control strain.

효율적인 UDP-glucose regeneration system을 구축하기 위해서 재순환 시스템에 관여하는 4가지 효소 (UDP-glucose pyrophosphorylase, UDP-Kinase gene, UDP-galactose 4-epimerase, and $\beta$-1, 4-galactasyltrasnsferase)들을 E. coli AD202에서 발현 시켜 Disaccharide 합성 정도를 보았다. Disaccharide는 0.5 mM IPTG 농도에서 가장 높은 농도를 나타내었다. 대조구와 비교한 결과 LacNAc 농도는 1.34 mM로 10배 정도 정가하였고, lactose 농도는 0.39 mM로 대조구보다 2.6배 증가하였다. 총 disaccharide 농도는 1.73 mM 이며, 대조구 보다 6.5배 높은 생산성을 보였다. 본 논문은 결과는 metabolic flux regeneration으로 disaccharides 합성을 증가시킬 수 있다는 것을 보여주었다.

Keywords

References

  1. Wong, C.-H. and G. M. Whitesides (1994), Enzymes in Synthetic Organic Chemistry 12. 1st edition. New York: Oxford
  2. Gabius, H.-J. and S. Gabius (1997), Glycoscience: status and perspectives. Champman and Hall Gmbh. Weinheim, Germany
  3. Flowers, H. M. (1978), Chemical synthesis of oligosaccharides. Methods Enzymol. 50, 93-121 https://doi.org/10.1016/0076-6879(78)50009-8
  4. Flitsch, S. L. (2000), Chemical and enzymatic synthesis of glycopolymers. Curr. Opin. Chem. Biol. 4(6), 619-625 https://doi.org/10.1016/S1367-5931(00)00152-6
  5. Koeller, K. M. and C. H. Wong (2000), Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 10(11), 1157-1169 https://doi.org/10.1093/glycob/10.11.1157
  6. Crout, D. H. and G. Vic (1998), Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr. Opin. Chem. Biol. 2(1), 98-111 https://doi.org/10.1016/S1367-5931(98)80041-0
  7. Meynial-Salles, I and D. Combes. (1996), In vitro glycosylation of proteins: An enzymatic approach. J. Biotechnol. 46(1), 1-14 https://doi.org/10.1016/0168-1656(95)00174-3
  8. Bailey, J. E. (1991), Toward a science of metabolic engineering. Science 252, 1668-1675 https://doi.org/10.1126/science.2047876
  9. Bettler, E., E. Samain, V. Chazalet, C. Bosso, A. Heyraud, D. H. Joziasse, W. W. Wakarchuk, A. Imberty, and R. A. Geremia. (1999), The living factory:in vivo production of N-acetyllactosamine containing carbohydrates in E. coli. Glycoconjugate J. 16, 205-212 https://doi.org/10.1023/A:1007024320183
  10. Endo, T. and S. Koizumi (2000), Large-scale production of oligosaccharides using engineered bacteria. Curr. Opin. Struct. Biol. 10, 536-541 https://doi.org/10.1016/S0959-440X(00)00127-5
  11. Endo, T., S. Koizumi, K. Tabata, S. Kakita, and A. Ozaki. (1999), Largescale production of N-acetylactosamine through bacterial coupling. Carbohydrate Res. 316, 179-183 https://doi.org/10.1016/S0008-6215(99)00050-6
  12. Ruffing, A. and R. R. Chen. (2006), Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microbial Cell Factories 5, 25 https://doi.org/10.1186/1475-2859-5-25
  13. Jana, S. and J. K. Deb, (2005), Strategies for efficient production of heterologous proteins in E. coli. Appl. Microbiol. Biotechnol. 67, 289-298 https://doi.org/10.1007/s00253-004-1814-0
  14. Sorensen, H. P. and K. K. Mortenson. (2005), Advanced genetic strategies for recombinant protein expression in E. coli. J. Biotechnol. 115, 113-128 https://doi.org/10.1016/j.jbiotec.2004.08.004
  15. Hokke, C. H., A. Zervosen, L. Ellig, D. H. Joziasse, and D. H. Van den Eijnden. (1996), One-pot enzymatic synthesis of the Gal ${\alpha}13Gal{\beta}14GlcNAc$ sequence with in situ UDP-Gal regeneration. Glycoconj. J. 13, 687-692 https://doi.org/10.1007/BF00731458
  16. Ruffing, A., M. Zichao, and R. R. Chen. (2006), Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. Metabolic. Eng. 8, 465-473 https://doi.org/10.1016/j.ymben.2006.05.004
  17. Nakano, H., T. Yamazaki, T. Ikeda, H. Masai, S. Miyataki, and L. Saito. (1994), Purification of glutathione S-transferase fusion proteins as a nondegraded form by using a protease-negative E. coli strain, AD202. Nucleic. Acids. Res. 22, 543-544 https://doi.org/10.1093/nar/22.3.543
  18. Rozkov, A. Avignone-rossa, F. ERTL, Jones, D. O'kennedy, J. J. Smith, J. W. Dale, and M. E. Bushell. (2004), Characterization of the Metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909-915 https://doi.org/10.1002/bit.20327
  19. Dave, S.-W. O., P. M. Nissom, R. Philp, S. K.-W. Oh, and M. G.-S. Yap. (2006), Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 during batch fermentation. Enzyme Microb. Technol. 39, 391-398 https://doi.org/10.1016/j.enzmictec.2005.11.048
  20. Yanisch-Perron, C., J. Vieira, and J. Messing. (1985), Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119 https://doi.org/10.1016/0378-1119(85)90120-9