5, 6, 7학년 학생들의 비례추론 능력 실태 조사

A Survey on the Proportional Reasoning Ability of Fifth, Sixth, and Seventh Graders

  • 발행 : 2008.02.28

초록

본 연구는 비례 추론의 중요성을 바탕으로 5, 6, 7학년 학생들의 비례추론 능력을 알아보고자, 다양한 유형의 비례 문제와 비례가 아닌 문제로 구성된 검사지를 이용하여 5학년 155명, 6학년 153명, 7학년 190명의 반응을 분석하였다. 분석 결과, 비례문제 유형별로는 정비례 상황의 미지값 구하기 문제, 수리적 비교, 반비례 상황의 미지값 구하기 문제, 질적 예측 및 비교의 순으로 성취 정도가 높게 나타났으며, 비례가 아닌 문제에서는 비례 상황이 아님에도 불구하고 전체 약 34%의 학생들이 비례관계를 적용하는 오류를 범하였다. 문제유형별로 학년별 학생들의 반응을 비교 분석함으로써 비와 비율 및 비례와 관련한 교수 학습 방향에 대한 시사점을 도출하였다.

The primary purpose of this study was to gather knowledge about $5^{th},\;6^{th},\;and\;7^{th}$ graders' proportional reasoning ability by investigating their reactions and use of strategies when encounting proportional or nonproportional problems, and then to raise issues concerning instructional methods related to proportion. A descriptive study through pencil-and-paper tests was conducted. The tests consisted of 12 questions, which included 8 proportional questions and 4 nonproportional questions. The following conclusions were drawn from the results obtained in this study. First, for a deeper understanding of the ratio, textbooks should treat numerical comparison problems and qualitative prediction and comparison problems together with missing-value problems. Second, when solving missing-value problems, students correctly answered direct-proportion questions but failed to correctly answer inverse-proportion questions. This result highlights the need for a more intensive curriculum to handle inverse-proportion. In particular, students need to experience inverse-relationships more often. Third, qualitative reasoning tends to be a more general norm than quantitative reasoning. Moreover, the former could be the cornerstone of proportional reasoning, and for this reason, qualitative reasoning should be emphasized before proportional reasoning. Forth, when dealing with nonproportional problems about 34% of students made proportional errors because they focused on numerical structure instead of comprehending the overall relationship. In order to overcome such errors, qualitative reasoning should be emphasized. Before solving proportional problems, students must be enriched by experiences that include dealing with direct and inverse proportion problems as well as nonproportional situational problems. This will result in the ability to accurately recognize a proportional situation.

키워드