DOI QR코드

DOI QR Code

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar (Laboratory for Advanced Ceramics, Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur) ;
  • Basu, Bikramjit (Laboratory for Advanced Ceramics, Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur)
  • 발행 : 2008.01.31

초록

In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

키워드

참고문헌

  1. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science-An Introduction to Materials in Medicine, 2nd edition, pp.526, Academic Press, New York, 2004
  2. J. Black, Orthopaedic Biomaterials: Research and Practice, Churchill Livingstone, 1988
  3. D. F. Williams, Consensus and definitions in biomaterials: Advances in Biomaterials, Elsevier Publishers, Amsterdam, The Netherlands, 1988
  4. M.S. Valiathan and V. K. Krishnan, "Biomaterial: An Overview," Nation. Med. J. Ind., 12 [6] 270-74 (1999)
  5. D. F. Williams, Definitions in Biomaterials, Progress in Biomedical Engineering, Elsevier Publishers, Amsterdam, The Netherlands, 1987
  6. C. P. Sharma, "Biomaterials and Artificial Organs-Current Status," Biomaterials, Biomedical Technology & Quality System, IIPC, SCTIMST, 2004
  7. F. H. Silver and D. L. Christiansen, Biomaterials Science and Biocompatibility, Springer publication, London, UK, 1999
  8. M. F. Harman, A. Naji, and P. Gonfrier, "In vitro Study of Biomaterials Biodegradation using Human Cell Cultures," Clini. Mater., 15 281-85 (1994) https://doi.org/10.1016/0267-6605(94)90059-0
  9. R. Z. LeGeros, "Preparation of Octacalcium Phosphate (OCP): A Direct Fast Method," Calcif. Tiss. Int., 37 194-97 (1985) https://doi.org/10.1007/BF02554841
  10. W. E. Brown, N. Eidelman, and B. Tomazic, "Octacalcium Phosphate as a Precursor in Biomineral Formation," Adv. Dent. Res., l [2] 306-13 (1987) https://doi.org/10.1177/08959374870010022201
  11. F. Betts, N. C. Blumenthal, and A. S. Posner, "Bone Mineralization," J. Crys. Grow., 53 63-73 (1981) https://doi.org/10.1016/0022-0248(81)90056-7
  12. T. Suzuki, R. Ohashi, Y. Yokogawa, K. Nishizawa, F. Nagata, Yukari Kawamoto, Tetsuya Kameyama, and Motohiro Toriyama, "Initial Anchoring and Proliferation of Fibroblast L-929 Cells on Unstable Surface of Calcium Phosphate Ceramics," J. of Biosc. and Bioengg., 87 [3] 320-27 (1999) https://doi.org/10.1016/S1389-1723(99)80039-5
  13. Q. Z. Chen, C. T. Wong, W. W. Lu, K. M. C. Cheung, J. C. Y. Leong, and K. D. K. Luk, "Strengthening Mechanisms of Bone-bonding to Crystalline Hydroxyapatite in vivo," Biomaterials, 25 4243-54 (2004) https://doi.org/10.1016/j.biomaterials.2003.11.017
  14. R. M. Souto, M. M. Laz, and R. L. Reis, "Degradation Characteristics of Hydroxyapatite Coatings on Orthopaedic TiAlV in Simulated Physiological Media Investigated by Electrochemical Impedance Spectroscopy," Biomaterials, 24 [23] 4213-21 (2003) https://doi.org/10.1016/S0142-9612(03)00362-4
  15. I. Knets, M. Dobelis, J. Laizans, R. Cimdins, and V. Vitins, "Glass and Hydroxyapatite Coating on Titanium Implant," J. Biomech., 31 [1] 166 (1998) https://doi.org/10.1016/S0021-9290(98)80335-7
  16. S. Gautier, E. Champion, and D. Bernache-Assollant, "Processing, Microstructure and Toughness of $Al_2O_3$ Platelet-Reinforced Hydroxyapatite," J. Euro. Ceram. Soc., 17 [11] 1361-69 (1997) https://doi.org/10.1016/S0955-2219(97)89403-4
  17. J. Li, B. Fartash and L. Hermansson, "Hydroxyapatitealumina Composites and Bone-bonding," Biomaterials, 16 [5] 417-22 (1995) https://doi.org/10.1016/0142-9612(95)98860-G
  18. R. R. Rao and T. S. Kannan, "Synthesis and Sintering of Hydroxyapatite-zirconia Composites," Mater. Sci. Eng: C, 20 [1-2] 187-93 (2002) https://doi.org/10.1016/S0928-4931(02)00031-0
  19. V. V. Silva, F. S. Lameiras, and R. Z. Dominguez, "Microstructural and Mechanical Study of Zirconia-hydroxyapatite (ZH) Composite Ceramics for Biomedical Applications," Comp. Sci. Tech., 61 [2] 301-10 (2001) https://doi.org/10.1016/S0266-3538(00)00222-0
  20. A. Rapacz-Kmita, A. Slosarczyk, and Z. Paszkiewicz "Mechanical Properties of $HAp-ZrO_2$ Composites," J. Euro. Cera. Soc., 26 [8] 1481-88 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.01.059
  21. A. Chiba, S. Kimura, K. Raghukandan, and Yasuhiro Morizono, "Effect of Alumina Addition on Hydroxyapatite Biocomposites Fabricated by Underwater-shock Compaction," Mat. Sci. and Eng. A, 350 179-83 (2003) https://doi.org/10.1016/S0921-5093(02)00718-9
  22. R. Hill and A. Clifford, "Apatite-mullite Glass-ceramics," J. Non-Cryst. Sol., 196 346-51 (1996) https://doi.org/10.1016/0022-3093(95)00611-7
  23. C. M. Gorman and R. G. Hill, "Heat-pressed Ionomer Glass-ceramics. Part I: an Investigation of Flow and Microstructure.," Dent. Mat., 19 [4] 320-26 (2003) https://doi.org/10.1016/S0109-5641(02)00061-1
  24. Y. M. Kong, C. J. Bae, S. H. Lee, H. W. Kim, and H. E. Kim, "Improvement in Biocompatibility of $ZrO_2-Al_2O_3$ nano-composite by addition of HA," Biomaterials, 26 [5] 509-17 (2005) https://doi.org/10.1016/j.biomaterials.2004.02.061
  25. I. Manjubala and M. Sivakumar, "In-situ Synthesis of Biphasic Calcium Phosphate Ceramics using Microwave Irradiation," Mat. Chem. Phys., 71 272-78 (2001) https://doi.org/10.1016/S0254-0584(01)00293-0
  26. D. C. Tancred, B. A. O. McCormack, and A. J. Carr, "A Quantitative Study of the Sintering and Mechanical Properties of Hydroxyapatite/phosphate Glass Composites," Biomaterials, 19 [19] 1735-43 (1998) https://doi.org/10.1016/S0142-9612(98)00082-9
  27. W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, "Hydroxyapatite/Hydroxyapatite-Whisker Composites without Sintering Additives: Mechanical Properties and Microstructural Evolution," J. Am. Ceram. Soc., 80 [11] 2805-13 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03197.x
  28. R. Xin, Y. Leng, J. Chen, and Q. Zhang, "A Comparative Study of Calcium Phosphate Formation on Bioceramics in vitro and in vivo," Biomaterials, 26 6477-86 (2005) https://doi.org/10.1016/j.biomaterials.2005.04.028
  29. J. Dong, T. Uemura, H. Kojima, M. Kikuchi, J. Tanaka, and T. Tateishi, "Application of Lowpressure System to Sustain in vivo Bone Formation in Osteoblast-porous Hydroxyapatite Composite," Mat. Sci. Eng. C, 17 37-43 (2001) https://doi.org/10.1016/S0928-4931(01)00333-2
  30. A. M. Gatti, D. Zaffe, and G. P. Poli, "Behaviour of Tricalcium Phosphate and Hydroxyapatite Granules in Sheep Bone Defects," Biomaterials, 11 513-17 (1990) https://doi.org/10.1016/0142-9612(90)90068-2
  31. C. Balcik, T. Tokdemir, A. Senkoylu, N. Koc, M. Timucin, S. Akin, P. Korkusuz, and F. Korkusuz, "Early Weight Bearing of Porous HA/TCP (60/40) Ceramics in vivo: A Longitudinal Study in a Segmental Bone Defect Model of Rabbit," Acta Biomat., 3 985-96 (2007) https://doi.org/10.1016/j.actbio.2007.04.004
  32. M. Fini, R. Cadossi, V. Cane, F. Cavani, G. Giavaresi, A. Krajewski, L. Martini, N. N. Aldin, A. Ravaglioli, L. Rimondini, P. Torricelli, and R. Giardino, "The Effect of Pulsed Electromagnetic Fields on the Osteointegration of Hydroxyapatite Implants in Cancellous Bone: a Morphologic and Microstructural in vivo Study," J. Ortho. Res., 20 756-63 (2002) https://doi.org/10.1016/S0736-0266(01)00158-9
  33. T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, G. Kawachic, Y. Gonda, H. Murayama, Y. Shibata, S. Minami, S. Kamihira, H. Kurosawa, and T. Ikeda, "The Effect of the Microstructure of ${\beta}$ tricalcium Phosphate on the Metabolism of Subsequently Formed Bone Tissue," Biomaterials, 28 2612-21 (2007) https://doi.org/10.1016/j.biomaterials.2007.01.040
  34. S. Nath, K. Biswas, and B. Basu, "Processing and Phase Formation and Microstructure Studies of Novel HAp-Mullite Composites," Scripta Materialia, under review, (2007)
  35. F. Wataria, A. Yokoyamaa, M. Omorib, T. Hiraic, H. Kondoa, M. Uoa, and T. Kawasakia, "Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-medical Application," Compo. Sci. Tech., 64 893-908 (2004) https://doi.org/10.1016/j.compscitech.2003.09.005
  36. C. Q. Ning and Y. Zhou, "In vitro Bioactivity of a Biocomposite Fabricated from HA and Ti powders by powder metallurgy method," Biomaterials, 23 2909-15 (2002) https://doi.org/10.1016/S0142-9612(01)00419-7
  37. F. Caro, K. S. Oh, R. Fameryl, and P. Boch, "Sintering of $TCP-TiO_2$ Biocomposites: $In{\ss}uence$ of Secondary Phases," Biomaterials, 19 1451-54 (1998) https://doi.org/10.1016/S0142-9612(98)00057-X
  38. S. Nath, R. Tripathi, and Bikramjit Basu, "Understanding the Sintering Reactions, Phase Stability, Microstructure Development and Cell Adhesion Properties of Pressureless Sintered HAp-Ti Composites," J. Mat. Res., accepted (2007)
  39. S. Roy, "Mica Based Machineable Glass Ceramics, (in Ind.)," in M.Tech Thesis, Indian Institute of Technology Kanpur, Kanpur, 2005
  40. A. R. Molla, "Mica Based Machineable Glass Ceramics with Different Fluoride Content, (in Ind.)," in M.Tech Thesis, Indian Institute of Technology Kanpur, Kanpur, 2007
  41. D. C. Clupper, J. E. Gough, P. M. Embanga, I. Notingher, L. L. Hench, and M. M. Hall, "Bioactive Evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment," J. Mater. Sci.: Mater.Med., 15 [7] 803-08 (2004) https://doi.org/10.1023/B:JMSM.0000032821.32577.fc
  42. K. D. Lobel and L. L. Hench, "In-Vitro Protein Interactions with a Bioactive Gel-Glass," J. Sol-Gel Sci. Tech., 7 69-76 (1996) https://doi.org/10.1007/BF00401885
  43. L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet, D. Bernache-Assolant A. Govin, "Structural Transformations of Bioactive Glass 45S5 with Thermal Treatments," Acta Materialia, 55 3305-13 (2007) https://doi.org/10.1016/j.actamat.2007.01.029
  44. E. VerneA, M. Ferraris, C. Jana, and L. Paracchini, "Bioverit1 I Base Glass/ti Particulate Biocomposite: "in situ" Vacuum Plasma Spray Deposition," J. Euro. Cera. Soc., 20 473-79 (2000) https://doi.org/10.1016/S0955-2219(99)00181-8
  45. E. VerneA , M. Ferraris, and C. Jana, "Pressureless Sintering of Bioverit1 III/Ti Particle Biocomposites," J. Euro. Cera. Soc., 19 2039-47 (1999) https://doi.org/10.1016/S0955-2219(99)00036-9
  46. C. Q. Ninga and Y. Zhoub, "On the Microstructure of Biocomposites Sintered from Ti,HA and Bioactive Glass," Biomaterials, 25 3379-87 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.017
  47. C. Fernandeza, E. Verne, J. Vogel, and G. Carlb, "Optimisation of the Synthesis of Glass-ceramic Matrix Biocomposites by the "Response Surface Methodology"," J. Euro. Cera. Soc., 23 1031-38 (2003) https://doi.org/10.1016/S0955-2219(02)00264-9
  48. M. Amarala, M. A. Lopesb, R. F. Silva, and J. D. Santos, "Densification Route and Mechanical Properties of Si_3N_4$-Bioglass Biocomposites," Biomaterials, 23 857-62 (2002) https://doi.org/10.1016/S0142-9612(01)00194-6
  49. V. M. da R. Barros, L. A. Salata, C. E. Sverzut, S. P. Xavier, R. van Noort, A. Johnson, and P. V. Hatton, "In vivo Bone Tissue Response to a Canasite Glass-ceramic," Biomaterials, 23 2895-900 (2002) https://doi.org/10.1016/S0142-9612(01)00417-3
  50. G. Zhang, R. A. Latour, Jr., J. M. Kennedy, H. D. Schutte, Jr., and R. J. Friedman, "Long-term Compressive Property Durability of Carbon Fibre-reinforced Polyetheretherketone Composite in Physiological Saline," Biomaterials, 17 [8] 781-89 (1996) https://doi.org/10.1016/0142-9612(96)81415-3
  51. T. R. Martin, S. W. Meyer, and D. R. Luchtel, "An Evaluation of the Toxicity of Carbon Fiber Composites for Lung Cells in Vitro and in Vivo," Environ. Res., 49 246-61 (1989) https://doi.org/10.1016/S0013-9351(89)80070-2
  52. J. Wang and R. Stevens, "Zirconia-toughened Alumina (ZTA) Ceramics," J. Mater. Sci., 24 3421-40 (1989) https://doi.org/10.1007/BF02385721
  53. A. H. D. Aza, J. Chevalier, G. Fantozzi, M. Schehl, and R. Torrecillas, "Crack Growth Resistance of Alumina, Zirconia and Zirconia Toughened Alumina Ceramics for Joint Prostheses," Biomaterials, 23 [3] 937-45 (2002) https://doi.org/10.1016/S0142-9612(01)00206-X
  54. B. Kerkwijk, L. Winnubst, E. J. Mulder, and H. Verweij, "Processing of Homogeneous Zirconiatoughened Alumina Ceramics with High Dry-sliding Wear Resistance," J. Am. Ceram. Soc., 82 [8] 2087-93 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02045.x
  55. C. He, Y. S. Wang, J. S. Wallace, and S. M. Hsu, "Effect of Microstructure on the Wear Transition of Zirconia-toughened Alumina," Wear, 162-164 A 314-21 (1993) https://doi.org/10.1016/0043-1648(93)90514-M
  56. K. Hayashi, T. Inadome, H. Tsumura, T. Mashima, and Y. Sugioka, "Bone-implant Interface Mechanics of in Tivo Bio-inert Ceramics," Biomaterials, 14 1173-79 (1993) https://doi.org/10.1016/0142-9612(93)90163-V
  57. G. Colon, B. C. Ward, and T. J. Webster, "Increased Osteoblast and Decreased Staphylococcus Epidermidis Functions on Nanophase ZnO and TiO_2$," J. Biomed. Mat. Res. Part A, 78A [3] 595-604 https://doi.org/10.1002/jbm.a.30789
  58. S. Nath, N. Sinha, and B. Basu, "Microstructure, Mechanical and Tribological Properties of Microwave Sintered Castabilized Zirconia for Biomedical Applications," Ceram. Inter., in press (2007) https://doi.org/10.1016/j.ceramint.2007.04.021
  59. S. Nath, S. Bajaj, and B. Basu, "Microstructure, Mechanical and Tribological Properties of Microwave Sintered Mgdoped Zirconia," Int. J. App. Ceram. Tech., accepted (2007)
  60. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, "Biomedical Applications of Polymer-composite Materials : a Review," Comp. Sc. Tech., 61 1189 (2001) https://doi.org/10.1016/S0266-3538(00)00241-4
  61. Orthopedic Composites ; Vol. 4, pp. 74, edited by Stuart M Lee, International Encyclopedia of Composites, New York, (1991)
  62. B. Harris, "The Mechanical Behavior of Composite Materials," Symp. Soc. Exp. Biol., 34 37-74 (1980)
  63. P. Christel, L. Claes, and S. A. Brown, "Carbon reinforced composites in orthopedic surgery," pp. 499, edited by M. Szycher , A comprehensive guide to medical and pharmaceutical application, CRC Press, Lancaster, USA, 1991
  64. B. D. Bauman, "Polymer-Polymer Composites Made with Surface Modified Particles and fibers, K Plast 2001 Dusseldorf Germany, October (2001). http://inhanceproducts.com/tech_lit/CRM-18034.pdf
  65. H. Amstutz, "Mechanism and Clinical Significance of Wear Debris-induced Osteolysis," Clinic. Ortho. Rel. Res., 276 7 (1992)
  66. N. Blumenthal, "A New Technique for Quantitation of Metal Particualates and Metal Reaction Products in Tissue Near Implants," J. App. Biomater., 5 191 (1994) https://doi.org/10.1002/jab.770050303
  67. E. Schneider, "Comperativestudy of the Initial Stability of Cementless Hip Prostheses," Clin. Othop., 248 200 (1989)
  68. K. St. John, "Applications of advanced composites in orthopedic implants." pp. 861, edited by M. Szycher, Biocompatible polymers, metals and composites. Lancaster : Technomic Publishing, 1983
  69. P. Christel, A. Meunier, S. Leclercq, P. Bouquet, and B. Buttazzoni, "Devolopement of Carboncarbon Hip Prostheses," J. Biomed. Mater. Res. : Appl. Biomet., 21 191 (1987)
  70. M. Akay, N. Aslan, Numerical and experimental stress analysis of a polymeric composite hip joint prostheses., J. Biomed. Mater. Res., 31 167 (1996) https://doi.org/10.1002/(SICI)1097-4636(199606)31:2<167::AID-JBM3>3.0.CO;2-L
  71. T. Peter, R. Tognini, J. Mayer, and E. Wintermantel, Homoelastic, anisotropic osteosynthesis system by netshape processing of endless carbon fiber reinforced polyetheretherketone (PEEK). pp. 317, edited by J. Goh, A. Nather, Proc. Of 9th conference on biomedical engineering, Singapore, National University of Singapore, 1997
  72. E. Wintermantel, A. Bruinink, K. Ruffiex, M. Petitmermet, and J. Mayer, Tissue engineering supported with structured biocompatible materials: goals and achievements. pp. 1, edited by M. Speidal , Uggowitzer, Materials in medicine , Switzerland: ETH zurich, 1998
  73. W. Bonefield, "Composites for Bone Replacement," J. Biomed. Eng., 10 522 (1998) https://doi.org/10.1016/0141-5425(88)90110-0
  74. B. Moyen, P. Lahey, E. Weinberg, and W. Harris, "Effects on Intact Femora of Dogs of the Application and Removal of Metal Plates," J. Bone Joint Sur., 60A [7] 940 (1978)
  75. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, "Biomedical Applications of Polymer-composite Materials: a Review," Compos. Sci. Technol., 61 [9] 1189-224 (2001) https://doi.org/10.1016/S0266-3538(00)00241-4
  76. M. Wang, S. Deb, and W. Bonfield, "Chemically Coupled Hydroxyapatite-polyethylene Composites: Processing and Characterization," Mat. Letters, 44 [2] 119-24 (2000) https://doi.org/10.1016/S0167-577X(00)00026-4
  77. M. Wang and W. Bonefield, "Chemically Coupled Hydroxyapatite-polyethylene Composite: Structure and Properties," Biomaterials, 22 1311 (2001) https://doi.org/10.1016/S0142-9612(00)00283-0
  78. L. D. Silvio, M. J. Dalby, and W. Bonfield, "Osteoblast Behaviour on HA/PE Composite Surfaces with Different HA Volumes," Biomaterials, 23 [1] 101-07 (2002) https://doi.org/10.1016/S0142-9612(01)00084-9
  79. W. Bonefield, "Hydroxyapatite Reinforced Polyethylene as an Analogous Material for Bone Replacement," Am. Acad. Sci., 523 173 (1988) https://doi.org/10.1111/j.1749-6632.1988.tb38510.x
  80. M. Wang, R. Joseph, and W. Bonefield, "Hydroxyapatite- Polyethylene Composites for Bone Substitution: Effects of Ceramic Particle Size and Morphology," Biomaterials, 19 2357 (1998) https://doi.org/10.1016/S0142-9612(98)00154-9
  81. M. Wang, M. Chandrasekaran, and W. Bonefeild, "Friction and Wear of Hydroxyapatite Reinforced High Density Polyethylene Against the Stainless Steel Counterface," J. Mater. Sc. Mater. Med., 13 607 (2004) https://doi.org/10.1023/A:1015139213211
  82. R. Rothon, Particulate-filled polymer composites, pp. 294, Longman Scientific and Technical, New Work, 1995
  83. A. Y. Sadi, S. S. Homaeigohar, A. R. Khavandi, and J. Javadpour, "The Effect of Partially Stabilized Zirconia on the Mechanical Properties of the Hydroxyapatite-polyethylene Composites," J. Mater. Sc. Mater. Med., 15 853 (2004) https://doi.org/10.1023/B:JMSM.0000036272.28022.3a
  84. Y. M. Kong, S. Kim, and H. E. Kim, "Reinforcement of Hydroxyapatite Bioceramic by Addition of $ZrO_2$ Coated with $Al_2O_3$," J. Am. Ceram. Soc., 82 [11] 2963 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02189.x
  85. J. R. Sarasua and P. M. Remiru, "The Mechanical Behaviour of PEEK Short Fiber Composites," J. Mater. Sci., 30 3501-08 (1995) https://doi.org/10.1007/BF00349901
  86. M. S. A. Bakar, P. Cheang, and K. A. Khor, "Mechanical Properties of Injection Molded Hydroxyapatite-polyetheretherketone Biocomposites," Compo. Sci. Technol., 63 421-25 (2003) https://doi.org/10.1016/S0266-3538(02)00230-0
  87. M. S. A. Bakar, M. H. W. Cheng, S. M. Tang, S. C. Yu, K. Liao, C. T. Tan, K. A. Khor, and P. Cheang, "Tensile Properties, Tension-tension Fatigue and Biological Response of Polyetheretherketone-hydroxyapatite Composites for Loadbearing Orthopedic Implants," Biomaterials, 24 2245-50 (2003) https://doi.org/10.1016/S0142-9612(03)00028-0
  88. S. Yu, K. P. Hariram, R. Kumar, Philip Cheang, and K. K. Aik, "In vitro Apatite Formation and Its Growth Kinetics on Hydroxyapatite/polyetheretherketone Biocomposites," Biomaterials, 26 2343-52 (2005) https://doi.org/10.1016/j.biomaterials.2004.07.028
  89. X. Wang, Y. Li, J. Wei, and K. Groot, "Devolopement of Biomimetic Nano-hydroxyapatite/poly (Hexamethylene Adipamide) Composites," Biomaterials, 23 [9] 4787 (2002) https://doi.org/10.1016/S0142-9612(02)00229-6
  90. S. Hasegawaa, S. Ishii, J. Tamura, T. Furukawa, M. Neo, Y. Matsusueb, Y. Shikinami, M. Okuno, and T. Nakamura, "A 5-7 Year in vivo Study of High-strength Hydroxyapatite/ poly(L-lactide) Composite Rods for the Internal Fixation of Bone Fractures," Biomaterials, 27 1327-32 (2006) https://doi.org/10.1016/j.biomaterials.2005.09.003
  91. H. Itokawa, T. Hiraide, M. Moriya, M. Fujimoto, G. Nagashima, R. Suzuki, and T. Fujimoto, "A 12 Month in vivo Study on the Response of Bone to a Hydroxyapatitepolymethylmethacrylate Cranioplasty Composite," Biomaterials, 28 4922-27 (2007) https://doi.org/10.1016/j.biomaterials.2007.08.001
  92. S. Nath, S. Bodhak, and B. Basu, "$HDPE-Al_2O_3-HAp$ Composites for Biomedical Applications: Processing and Characterization," J. Biomed. Mat. Res.: Part B, Appl. Biomat., provisionally accepted (2007) https://doi.org/10.1002/jbm.b.31050
  93. S. Bodhak, S. Nath, and Bikramjit Basu, "Understanding the Fretting Wear Properties of HAp, $Al_2O_3$ Containing HDPE Biocomposites Against ZrO_2$," J. Biomed. Mater. Res.: Part A, in press (2007)
  94. S. Nath, S. Bodhak, and B. Basu, "Tribological Investigation of Novel HDPE-HAp-Al2O3 Hybrid Biocomposites Against Steel under Dry and Simulated Body Fluid Condition," J. of Biomed. Mater.Res.: Part A, 83A [1] 191-208 (2007) https://doi.org/10.1002/jbm.a.31203
  95. S. Bodhak, S. Nath, and B. Basu, "Friction and Wear Properties of Novel HDPE -HAp-Al2O3 Composites against Alumina counterface," J. Biomat. Appl., accepted (2007) https://doi.org/10.1177/0885328208090012
  96. B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine. Elsevier Academic Press, London, 2004
  97. U. E. Pazzaglia, L. Ceciliani, M. J. Wilkinson, and C. Dell'Orbo, "Involvement of Metal Particles in Loosening of Metal-Plastic Total Hip Prostheses," Arch. Orthop. Trauma Surg., 104 164-74 (1985) https://doi.org/10.1007/BF00454694
  98. A. Choubey, B. Basu, and R. Balasubramaniam, "Tribological Behavior of Ti- Based Alloys in Simulated Body Fluid Solution at Fretting Contacts," Mater. Sci. Eng. A, 379 234-39 (2004) https://doi.org/10.1016/j.msea.2004.02.027
  99. M. Sivakumar, U. K. Mudali, and S. Rajeswari, "Compatibility of Ferritic and Duplex Stainless Steels as Implant Materials: in vitro Corrosion Performance, J. Mater. Sci., 28 6081-86 (1993) https://doi.org/10.1007/BF00365025
  100. S. Hierholzer, G. Hierholzer, K. H. Sauer, and R. S. Paterson, "Increased Corrosion of Stainless Steel Implants in Infected Plated Fractures," Arch. Orthop. Trauma Surg., 102 198-200 (1984) https://doi.org/10.1007/BF00575233
  101. D. F. Wllliams and G. C. F. Clark, "The Corrosion of Pure Cobalt in Physiological Media," J. Mater. Sci., 17 1675-82 (1982) https://doi.org/10.1007/BF00540795
  102. S. Spriano, M. Bronzoni, F. Rosalbino, and E. Vern, "New chemical treatment for bioactive titanium alloy with high corrosion resistance," J. Mater. Sci.: Mater. Medi., 16 203-11 (2005) https://doi.org/10.1007/s10856-005-6681-4
  103. A. Choubey, R. Balasubramaniam, and B. Basu, "Effect of Replacement of V by Nb and Fe on the Electrochemical and Corrosion Behavior of Ti-6Al-4V in Simulated Physiological Environment," J. All. Compo., 381 288-94 (2004) https://doi.org/10.1016/j.jallcom.2004.03.096
  104. R. V. Noort, "Review Titanium: the Implant Material of Today," J. Mater. Sci., 22 3801-81 (1987) https://doi.org/10.1007/BF01133326
  105. D. M. Gordina, T. Glorianta, G. Nemtoi, R. Chelariuc, N. Aeleneid, A. Guilloua, and D. Ansela, "Synthesis, Structure and Electrochemical Behavior of a Beta Ti-12Mo- 5Ta Alloy as New Biomaterial," Mater. Lett., 59 2936 -41 (2005) https://doi.org/10.1016/j.matlet.2004.09.063
  106. C. E. Wen, Y. Yamada, and P. D. Hodgson, "Fabrication of Novel TiZr Alloy Foams for Biomedical Applications," Mat. Sci. Eng. C, 26 [8] 1439-44 (2006) https://doi.org/10.1016/j.msec.2005.08.006
  107. D. A. Hollander, M. von Walter, T. Wirtz, R. Sellei, B. S. Rohlfing, Othmar Paar, and Hans-Josef Erli, "Structural, Mechanical and in vitro Characterization of Individually Structured Ti-6Al-4V Produced by Direct Laser Forming," Biomaterials, 27 955-63 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.041
  108. P. Matter and H. B.Burch, "Clinical Experience with Titanium Implants, Especially with the Limited Contact Dynamic Compression Plate System," Arch. Orthop. Trauma Surg., 109 311-13 (1990) https://doi.org/10.1007/BF00636167
  109. C. B. Johansson, A. Wennerberg, and T. Albrektsson, "Quantitative Comparison of Screw-shaped Commercially Pure Titanium and Zirconium Implants in Rabbit Tibia," J. Mater. Sci.: Mater. Medi., 5 340-44 (1994) https://doi.org/10.1007/BF00058959
  110. L. Sennerby, P. Thomsen, and L. E. Ericson, "Ultrastructure of the Bone-titanium Interface in Rabbits," J. Mater. Sci. Mater. Medi., 3 262-71 (1992) https://doi.org/10.1007/BF00705291
  111. D Muster, J. H. Jaeger, M. Bouzouita, C. Burggraf, and C. Baltzinger, "Application of Physical Surface Methods to the Study of the Stability and Structure of Bone-Metal Interfaces," Anat. Clin., 4 183-88 (1982) https://doi.org/10.1007/BF01798887
  112. W. Plotz, R. Gradinger, H. Rechl, R. Ascherl, S. Wicke- Wittenius, and E. Hipp, "Cementless Prosthesis of the Hip Joint with "Spongy Metal" Surface A Prospective Study," Arch. Orthop. Trauma Surg., 111 102-09 (1992) https://doi.org/10.1007/BF00443476
  113. M. Patriarca and G. S. Fell, "Monitoring of Sources of Clinical Exposure to Nickel," Mikrochim Acta, 123 261-69 (1996) https://doi.org/10.1007/BF01244399
  114. http://www.tantalum-coating.com/Literatur.htm
  115. A. S. Aronson, N. Jonsson, and P. Alberius, "Tantalum Markers in Radiography," Sleletal Radiol., 14 207-11 (1985) https://doi.org/10.1007/BF00355566
  116. M. Semlitsch and H. G. Willert, "Implant Materials for Hip Endoprostheses: Old Proofs and New Trends," Arch. Orthop. Trauma Surg., 114 61-7 (1995) https://doi.org/10.1007/BF00422826
  117. M. P. Staigera, A. M. Pietaka, and J. Huadmaia, "George Dias Magnesium and Its Alloys as Orthopedic Biomaterials: A Review," Biomaterials, 27 1728-34 (2006) https://doi.org/10.1016/j.biomaterials.2005.10.003
  118. D. D. Dittert, G. Wamecke, and H. G. Willert, "Aluminum Levels and Stores in Patients with Total Hip Endoprostheses from TiAIV or TiAlNb Alloys," Arch. Orthop. Trauma Surg., 114 133-36 (1995) https://doi.org/10.1007/BF00443386
  119. Y. W. Gua, K. A. Khora, and P. Cheang, "In vitro Studies of Plasma-sprayed Hydroxyapatite/Ti-6Al-4V Composite Coatings in Simulated Body Fluid (SBF)," Biomaterials, 24 1603-11 (2003) https://doi.org/10.1016/S0142-9612(02)00573-2
  120. Y. PengLu, M. S. Li, S. T. Li, Z. G. Wang, and R. F. Zhu, "Plasma Sprayed Hydroxyapatite+titania Composite Bond Coat for Hydroxyapatite Coating on Titanium Substrate," Biomaterials, 25 4393-403 (2004) https://doi.org/10.1016/j.biomaterials.2003.10.092
  121. R. Godley, D. Starosvetsky, and I. Gotman, "Bonelike Apatite Formation on Niobium Metal Treated in Aqueous NaOH," J. Mater. Sci.: Mater. Medi., 15 1073-77 (2004) https://doi.org/10.1023/B:JMSM.0000046388.07961.81
  122. J. Pajamaki, S. Lindholm, O. Andersson, K. Karlsson, A. Yli-Urpo, and R. R Happonen, "Glassceramic-coated Titanium Hip Endoprosthesis Experimental Study in Rabbits," Arch. Orthop. Trauma Surg., 114 119-22 (1995) https://doi.org/10.1007/BF00422839
  123. E. Munting, "The Contributions and Limitations of Hydroxyapatite Coatings to Implant Fixation: A Histomorphometric Study of Load Bearing Implants in Dogs," Inter. Ortho. (SICOT), 20 1-6 (1996) https://doi.org/10.1007/PL00006691
  124. H. Wang, N. Eliaz, Z. Xiang, H. P. Hsu, M. Spector, and L. W. Hobbs, "Early Bone Apposition in vivo on Plasmasprayed and Electrochemically Deposited Hydroxyapatite Coatings on Titanium Alloy," Biomaterials, 27 [23] 4192-203 (2006) https://doi.org/10.1016/j.biomaterials.2006.03.034
  125. M. F. Chen, X. J. Yang, R. X. Hu, Z. D. Cui, and H. C. Man, "Bioactive NiTi Shape Memory Alloy Used as Bone Bonding Implants," Mater. Sci. Eng. C, 24 497-502 (2004) https://doi.org/10.1016/j.msec.2003.11.001
  126. A Choubey, A Dorner-Reisel, and B. Basu, "Friction and Wear Behaviour of DLC Coated Biomaterials in Simulated Body Fluid Solution at Fretting Contacts," Key Eng. Mat., 264-268 [3] 2115-18 (2004) https://doi.org/10.4028/www.scientific.net/KEM.264-268.2115
  127. T. Hanawa, "Metal Ion Release from Metal Implants," Mat. Sci. Eng. C, 24 745-52 (2004) https://doi.org/10.1016/j.msec.2004.08.018
  128. P. Habibovic, T. M. Sees, M. A. van den Doel, C. A. van Blitterswijk, and K. de Groot, "Osteoinduction by Biomaterials- Physicochemical and Structural Influences," J. Biomed. Mater. Res. A., 77A [4] 747-62 (2006) https://doi.org/10.1002/jbm.a.30712
  129. J. C. Elliott, Structure and Chemistry of the Apatites and Other calcium Orthophosphates, Amsterdam: Elsevier, 1994
  130. T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, and T. Yamamuro, "Ca-P Rich Layer Formed on High Strength Bioactive Glass-ceramics A-W," J. Biomed. Mater. Res., 24 331-43 (1990) https://doi.org/10.1002/jbm.820240306
  131. M. M. Peireira, A. E. Clark, and L. L. Hench, "Calcium Phosphate Formation on Sol-gel-derived Bioactive Glasses in vitro," J. Biomed. Mater. Res., 28 [6] 693-98 (1994) https://doi.org/10.1002/jbm.820280606
  132. G. Daculsi, R. Z. LeGeros, M. M. Heughebaert, and I. Barbieux, "Formation of Carbonate Apatite Crystals after Implantation of Calcium Phosphate Ceramics," Calcif. Tissue Int., 46 20-7 (1990) https://doi.org/10.1007/BF02555820
  133. C. T. Hanks', J. C. Watahaz, and Z. Suni, "In vitro Models of Biocompatibility: A Review," Dent. Mater., 12 186-93 (1996) https://doi.org/10.1016/S0109-5641(96)80020-0
  134. H. W. Kim, Y. H. Koh, S. B. Seo, and H. E. Kim, "Properties of Fluoridated Hydroxyapatite-alumina Biological Composites Densified with Addition of $CaF_2$," Mater. Sci. Eng. C, 23 515-21 (2003) https://doi.org/10.1016/S0928-4931(02)00355-7

피인용 문헌

  1. Calcium Orthophosphates in Nature, Biology and Medicine vol.2, pp.2, 2009, https://doi.org/10.3390/ma2020399
  2. Development of polymer based biocomposites: a review vol.25, pp.3-4, 2010, https://doi.org/10.1179/175355510X12723642365089
  3. Mechanical properties of novel calcium phosphate–mullite biocomposites vol.27, pp.1, 2012, https://doi.org/10.1177/0885328210393292
  4. biocompatibility of novel biphasic calcium phosphate-mullite composites vol.27, pp.5, 2013, https://doi.org/10.1177/0885328211412206
  5. Synthesis and Characterization of Hydroxyapatite Powder by Eggshell vol.04, pp.02, 2016, https://doi.org/10.4236/jmmce.2016.42011
  6. response of novel calcium phosphate-mullite composites: Results up to 12 weeks of implantation vol.90B, pp.2, 2009, https://doi.org/10.1002/jbm.b.31316
  7. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites vol.21, pp.4, 2010, https://doi.org/10.1007/s10856-009-3939-2
  8. In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid vol.21, pp.6, 2010, https://doi.org/10.1007/s10856-010-4053-1