DOI QR코드

DOI QR Code

Recent Progress in Biotechnology-based Gene Manipulating Systems to Produce Knock-In/Out Mouse Models

  • Lee, Woon Kyu (Laboratory of Animal Medicine, Medical Research Center, Yonsei University Health System) ;
  • Park, Joong Jean (Department of Physiology, College of Medicine, Korea University) ;
  • Cha, Seok Ho (Department of Pharmacology and Toxicology, and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Yun, Cheol-Heui (Graduate School of Agriculture Biotechnology, College of Agriculture and Life Science, Seoul National University)
  • 투고 : 2007.09.01
  • 심사 : 2007.12.13
  • 발행 : 2008.05.01

초록

Gene-manipulated mice were discovered for the first time about a quarter century ago. Since then, numerous sophisticated technologies have been developed and applied to answer key questions about the fundamental roles of the genes of interest. Functional genomics can be characterized into gain-of-function and loss-of-function, which are called transgenic and knock-out studies, respectively. To make transgenic mice, the most widely used technique is the microinjection of transgene-containing vectors into the embryonic pronucleus. However, there are critical drawbacks: namely position effects, integration of unknown copies of a foreign gene, and instability of the foreign DNA within the host genome. To overcome these problems, the ROSA26 locus was used for the knock-in site of a transgene. Usage of this locus is discussed for the gain of function study as well as for several brilliant approaches such as conditional/inducible transgenic system, reproducible/inducible knockdown system, specific cell ablation by Cre-mediated expression of DTA, Cre-ERTM mice as a useful tool for temporal gene regulation, MORE mice as a germ line delete and site specific recombinase system. Techniques to make null mutant mice include complicated steps: vector design and construction, colony selection of embryonic stem (ES) cells, production of chimera mice, confirmation of germ line transmission, and so forth. It is tedious and labor intensive work and difficult to approach. Thus, it is not readily accessible by most researchers. In order to overcome such limitations, technical breakthroughs such as reporter knock-in and gene knock-out system, production of homozygous mutant ES cells from a single targeting vector, and production of mutant mice from tetraploid embryos are developed. With these upcoming progresses, it is important to consider how we could develop these systems further and expand to other animal models such as pigs and monkeys that have more physiological similarities to humans.

키워드

참고문헌

  1. Austin, C. P., J. F. Battey, A. Bradley, M. Bucan, M. Capecchi and F. S. Collins. 2004. The knockout mouse project. Nat. Genet. 36:921-924. https://doi.org/10.1038/ng0904-921
  2. Belteki, G., J. Haigh, N. Kabacs, K. Haigh, K. Sison, F. Costantini, J. Whitsett, S. E. Quaggin and A. Nagy. 2005. Conditional and inducible transgene expression in mice through the combinatorial use of Cre-mediated recombination and tetracycline induction. Nucleic Acids Res. 33:e51. https://doi.org/10.1093/nar/gni051
  3. Belteki, G., M. Gertsenstein, D. W. Ow and A. Nagy. 2003. Sitespecific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotech. 21:321-324. https://doi.org/10.1038/nbt787
  4. Branda, C. S. and S. M. Dymecki. 2004. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6:7-28. https://doi.org/10.1016/S1534-5807(03)00399-X
  5. Capecchi, M. R. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:507-512.
  6. Chrenek, P., L. Chrastinova, K. Kirchnerova, A. V. Makarevich and V. Foltys. 2007. The yield and composition of milk from transgenic rabbits. Asian-Aust. J. Anim. Sci. 20:482-486. https://doi.org/10.5713/ajas.2007.482
  7. Collins, F. S., J. Rossant and W. Wurst. 2007. A Mouse for all reasons. Cell 128:9-13. https://doi.org/10.1016/j.cell.2006.12.018
  8. Deng, C., M. Bedford, C. Li, X. Xu, X. Yang, J. Dunmore and P. Leder. 1997. Fibroblast growth factor receptor-1 (FGFR-1) is essential for normal neural tube and limb development. Dev. Biol. 186:42-54.
  9. Evans, M. J. and M. H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156. https://doi.org/10.1038/292154a0
  10. George, S. H. L., M. Gertsenstein, K. Vintersten, E. Korets-Smith, J. Murphy, M. E. Stevens, J. J. Haigh and A. Nagy. 2007. Developmental and adult phenotyping directly from mutant embryonic stem cells. Proc. Natl. Acad. Sci. USA 104:4455-4460. https://doi.org/10.1073/pnas.0609277104
  11. Gorivodsky, M. and P. Lonai. 2003. Novel roles of Fgfr2 in AER differentiation and positioning of the dorsoventral limb interface. Development 130:5471-5479. https://doi.org/10.1242/dev.00795
  12. Grippo, P. J., P. S. Nowlin, R. D. Cassaday and E. P. Sandgren. 2002. Cell-specific transgene expression from a widely transcribed promoter using Cre/lox in mice. Genesis 32:277-286. https://doi.org/10.1002/gene.10080
  13. Gu, X., C. Li, W. Wei, V. Lo, S. Gong, S-H. Li, T. Iwasato, S. Itohara, X-J. Li, I. Mody, N. Heintz and X. W. Yang. 2005. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntington contribute to cortical pathogenesis in HD mice. Neuron 46:433-444. https://doi.org/10.1016/j.neuron.2005.03.025
  14. Hayashi, S. and A. P. McMahon. 2002. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244:305-318. https://doi.org/10.1006/dbio.2002.0597
  15. Hitz, C., W. Wurst and R. Kuhn. 2007. Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res. 35:e90. https://doi.org/10.1093/nar/gkm475
  16. Hudziak, R. M., F. A. Laski, U. L. RajBhandary, P. A. Sharp and M. R. Capecchi. 1982. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes. Cell 31:137-146. https://doi.org/10.1016/0092-8674(82)90413-5
  17. Hwang, S., E. J. Choi, S. You, Y. J. Choi, K. S. Min and J. T. Yoon. 2006. Development of bovine nuclear transfer embryos using life-span extended donor cells transfected with foreign gene. Asian-Aust. J. Anim. Sci. 19:1574-1579. https://doi.org/10.5713/ajas.2006.1574
  18. Ivanova, A., M. Signore, N. Caro, N. D. E. Greene, A. J. Copp and J. P. Martinez-Barbera. 2005. In vivo genetic ablation by Cremediated expression of dphtheria toxin fragment A. Genesis 43:129-135. https://doi.org/10.1002/gene.20162
  19. Jeong, J., J. Mao, T. Tenzen, A. H. Kottmann and A. P. McMahon. 2006. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordial. Genes Dev. 18:937-951. https://doi.org/10.1101/gad.1190304
  20. Kisseberth, W. C., N. T. Brettingen, J. K. Lohse and E. P. Sandgren. 1999. Ubiquitous expression of marker transgenes in mice and rats. Dev. Biol. 214:128-138. https://doi.org/10.1006/dbio.1999.9417
  21. Koller, B. H. and O. Smithies. 1989. Inactivating the beta 2-microglobulin locus in mouse embryonic stem cells by homologous recombination. Proc. Natl. Acad. Sci. USA. 86:8932-8935. https://doi.org/10.1073/pnas.86.22.8932
  22. Lakso, M., J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt and H. Westphal. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA. 93:5860-5865. https://doi.org/10.1073/pnas.93.12.5860
  23. Mao, A., B. Barrow, J. McMahon, J. Vaughan and A. P. McMahon. 2005. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucleic Acids Res. 33:e155. https://doi.org/10.1093/nar/gni146
  24. Mortensen, R. M., D. A. Conner, S. Chao, A. A. T. Geisterfer-Lowrance and J. G. Seidman. 1992. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12:2391-2395. https://doi.org/10.1128/MCB.12.5.2391
  25. Murtaugh, L. C., B. Z. Stanger, K. M. Kwan and D. A. Melton. 2003. Notch signaling controls multiple steps of pancreatin differentiation. Proc. Natl. Acad. Sci. USA. 100:14920-14925. https://doi.org/10.1073/pnas.2436557100
  26. O'Gorman, S., D. T. Fox and G. M. Wahl. 1991. Recombinasemediated gene activation and site-specific integration in mammalian cells. Sci. 251:1351-1355. https://doi.org/10.1126/science.1900642
  27. Odorfer, Ko. I., N. J. Unger, K. Weber, E. P. Sandgren and R. G. Erben. 2007. Marker tolerant, immunocompetent animal as a new tool for regenerative medicine and long-term cell tracking. BMC Biotech. 7:30. https://doi.org/10.1186/1472-6750-7-30
  28. Raymond, C. S. and P. Soriano. 2007. High-efficiency FLP and $\phi$C31 site-specific recombination in mammalian cells. PLoS ONE 2:e162. https://doi.org/10.1371/journal.pone.0000162
  29. Riele, T., E. R. Maandag, A. Clarke, M. Hooper and A. Berns. 1990. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348:649-651. https://doi.org/10.1038/348649a0
  30. Sauer, B. and N. Henderson. 1988. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA. 85:5166-5170. https://doi.org/10.1073/pnas.85.14.5166
  31. Snow, M. H. 1973. Tetraploid mouse embryos produced by cytochalasin B during cleavage. Nature 244:513-515. https://doi.org/10.1038/244513a0
  32. Snow, M. H. 1975. Embryonic development of tetraploid mice during the second half of gestation. J. Embryol. Exp. Morph. 35:81-86.
  33. Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21:70-71. https://doi.org/10.1038/5007
  34. Srinivas, S., T. Watanabe, C-S. Lin, C. M. William, Y. Tanabe, T. M. Jessell and F. Costantini. 2001. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1:4. https://doi.org/10.1186/1471-213X-1-4
  35. Tallquist, M. D. and P. Soriano. 2000. Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113-115. https://doi.org/10.1002/(SICI)1526-968X(200002)26:2<113::AID-GENE3>3.0.CO;2-2
  36. Tarkowski, A. K., A. Witkowska and J. Opas. 1977. Development of cytochalasin B-induced tetraploid and diploid/tetraploid mosaic mouse embryos. J. Embryol. Exp. Morph. 41:47-64.
  37. Wang, W., M. Warren and A. Bradley. 2007. Induced mitotic recombination of p53 in vivo. Proc. Natl. Acad. Sci. USA. 104:4501-4505. https://doi.org/10.1073/pnas.0607953104
  38. Wu, S., G. Ying, Q. Wu and M. R. Capecchi. 2007. Toward simpler and faster genome-wide mutagenesis in mice. Nat. Genet. 39:922-930. https://doi.org/10.1038/ng2060
  39. Yu, H-M., B. Liu, S-Y. Chiu, F. Costantini and W. Hsu. 2005. Development of a unique system for spatiotemporal and lineage-specific gene expression in mice. Proc. Natl. Acad. Sci. USA. 102:8615-8620. https://doi.org/10.1073/pnas.0500124102
  40. Yu, J. and A. P. McMahon. 2006. Reproducible and inducible knockdown of gene expression in mice. Genesis 44:252-261. https://doi.org/10.1002/dvg.20213
  41. Zambrowicz, B. P., A. Imanoto, S. Fiering, L. A. Herzenberg, W. G. Kerr and P. Soriano. 1997. Disruption of overlapping transcripts in the ROSA $\beta$geo26 gene trap strain leads to widespread expression of $\beta$-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA. 94:3789-3794. https://doi.org/10.1073/pnas.94.8.3789