Functional Diversity of Cysteine Residues in Proteins and Unique Features of Catalytic Redox-active Cysteines in Thiol Oxidoreductases

  • Fomenko, Dmitri E. (Department of Biochemistry and Redox Biology Center, University of Nebraska) ;
  • Marino, Stefano M. (Department of Biochemistry and Redox Biology Center, University of Nebraska) ;
  • Gladyshev, Vadim N. (Department of Biochemistry and Redox Biology Center, University of Nebraska)
  • 투고 : 2008.07.15
  • 심사 : 2008.07.17
  • 발행 : 2008.09.30

초록

Thiol-dependent redox systems are involved in regulation of diverse biological processes, such as response to stress, signal transduction, and protein folding. The thiol-based redox control is provided by mechanistically similar, but structurally distinct families of enzymes known as thiol oxidoreductases. Many such enzymes have been characterized, but identities and functions of the entire sets of thiol oxidoreductases in organisms are not known. Extreme sequence and structural divergence makes identification of these proteins difficult. Thiol oxidoreductases contain a redox-active cysteine residue, or its functional analog selenocysteine, in their active sites. Here, we describe computational methods for in silico prediction of thiol oxidoreductases in nucleotide and protein sequence databases and identification of their redox-active cysteines. We discuss different functional categories of cysteine residues, describe methods for discrimination between catalytic and noncatalytic and between redox and non-redox cysteine residues and highlight unique properties of the redox-active cysteines based on evolutionary conservation, secondary and three-dimensional structures, and sporadic replacement of cysteines with catalytically superior selenocysteine residues.

키워드

참고문헌

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Andres-Mateos, E., Perier, C., Zhang, L., Blanchard-Fillion, B., Greco, T.M., Thomas, B., Ko, H.S., Sasaki, M., Ischiropoulos, H., Przedborski, S., et al. (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc. Natl. Acad. Sci. USA 104, 14807-14812
  3. Attwood, T.K., Bradley, P., Flower, D.R., Gaulton, A., Maudling, N., Mitchell, A.L., Moulton, G., Nordle, A., Paine, K., Taylor, P., et al. (2003). PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res. 31, 400-402 https://doi.org/10.1093/nar/gkg030
  4. Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C., and Toledano, M.B. (2003). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic. Biol. Med. 35, 889-900 https://doi.org/10.1016/S0891-5849(03)00434-9
  5. Beeby, M., O'Connor, B.D., Ryttersgaard, C., Boutz, D.R., Perry, L.J., and Yeates, T.O. (2005). The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biol. 3, e309 https://doi.org/10.1371/journal.pbio.0030309
  6. Biswas, S., Chida, A.S., and Rahman, I. (2006). Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem. Pharmacol. 71, 551-564 https://doi.org/10.1016/j.bcp.2005.10.044
  7. Bock, A., Forchhammer, K., Heider, J., and Baron, C. (1991). Selenoprotein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 16, 463-467 https://doi.org/10.1016/0968-0004(91)90180-4
  8. Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A.M., et al. (2006). Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer's disease. Antioxid. Redox Signal. 8, 1975-1986 https://doi.org/10.1089/ars.2006.8.1975
  9. Cammer, S.A., Hoffman, B.T., Speir, J.A., Canady, M.A., Nelson, M.R., Knutson, S., Gallina, M., Baxter, S.M., and Fetrow, J.S. (2003). Structure-based active site profiles for genome analysis and functional family subclassification. J. Mol. Biol. 334, 387-401 https://doi.org/10.1016/j.jmb.2003.09.062
  10. Castagnetto, J.M., Hennessy, S.W., Roberts, V.A., Getzoff, E.D., Tainer, J.A., and Pique, M.E. (2002). MDB: the metalloprotein database and browser at the scripps research institute. Nucleic Acids Res 30, 379-382 https://doi.org/10.1093/nar/30.1.379
  11. Chivers, P.T., Laboissiere, M.C., and Raines, R.T. (1996). The CXXC motif: imperatives for the formation of native disulfide bonds in the cell. EMBO J. 15, 2659-2667
  12. Chivers, P.T., Prehoda, K.E., and Raines, R.T. (1997). The CXXC motif: a rheostat in the active site. Biochemistry 36, 4061-4066 https://doi.org/10.1021/bi9628580
  13. Collet, J.F., and Bardwell, J.C. (2002). Oxidative protein folding in bacteria. Mol. Microbiol. 44, 1-8 https://doi.org/10.1046/j.1365-2958.2002.02851.x
  14. Conway, M.E., Poole, L.B., and Hutson, S.M. (2004). Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme. Biochemistry 43, 7356-7364 https://doi.org/10.1021/bi0498050
  15. Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., and Milzani, A. (2007). S-glutathionylation in protein redox regulation. Free Radic. Biol. Med. 43, 883-898 https://doi.org/10.1016/j.freeradbiomed.2007.06.014
  16. Dalle-Donne, I., Milzani, A., Gagliano, N., Colombo, R., Giustarini, D., and Rossi, R. (2008). Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid. Redox Signal. 10, 445-473 https://doi.org/10.1089/ars.2007.1716
  17. Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J. and Toledano, M.B. (2002). A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111, 471-481 https://doi.org/10.1016/S0092-8674(02)01048-6
  18. Fermani, S., Sparla, F., Falini, G., Martelli, P.L., Casadio, R., Pupillo, P., Ripamonti, A., and Trost, P. (2007). Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3- phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 104, 11109-11114
  19. Fetrow, J.S., and Skolnick, J. (1998). Method for prediction of protein function from sequence using the sequence-to-structure-tofunction paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J. Mol. Biol. 281, 949-968 https://doi.org/10.1006/jmbi.1998.1993
  20. Fetrow, J.S., Godzik, A., and Skolnick, J. (1998). Functional analysis of the Escherichia coli genome using the sequence-to structure-to-function paradigm: identification of proteins exhibiting the glutaredoxin/thioredoxin disulfide oxidoreductase activity. J. Mol. Biol. 282,703-711 https://doi.org/10.1006/jmbi.1998.2061
  21. Fetrow, J.S., Siew, N., Di Gennaro, J.A., Martinez-Yamour, M., Dyson, H.J., and Skolnick, J. (2001). Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight? Protein Sci. 10, 1005-1014 https://doi.org/10.1110/ps.49201
  22. Fomenko, D.E., and Gladyshev, V.N. (2002). CxxS: fold-inependent redox motif revealed by genome-wide searches for thiol/disulfide oxidoreductase function. Protein Sci. 11, 2285-2296 https://doi.org/10.1110/ps.0218302
  23. Fomenko, D.E., and Gladyshev, V.N. (2003). Identity and functions of CxxC-derived motifs. Biochemistry 42, 11214-11225 https://doi.org/10.1021/bi034459s
  24. Fomenko, D.E., Xing, W., Adair, B.M., Thomas, D.J., and Gladyshev, V.N. (2007). High-Throughput Identification of Catalytic Redox- Active Cysteine Residues. Science 315, 387-389 https://doi.org/10.1126/science.1133114
  25. Gattiker, A., Gasteiger, E., and Bairoch, A. (2002). ScanProsite: a reference implementation of a PROSITE scanning tool. Appl. Bioinform. 1, 107-108
  26. Giles, N.M., Watts, A.B., Giles, G.I., Fry, F.H., Littlechild, J.A., and Jacob, C. (2003). Metal and redox modulation of cysteine protein function. Chem. Biol. 10, 677-693 https://doi.org/10.1016/S1074-5521(03)00174-1
  27. Gladyshev, V.N., Kryukov, G.V., Fomenko, D.E., and Hatfield, D.L. (2004). Identification of trace element-containing proteins in genomic databases. Annu. Rev. Nutr. 24, 579-596 https://doi.org/10.1146/annurev.nutr.24.012003.132241
  28. Greco, T.M., Hodara, R., Parastatidis, I., Heijnen, H.F., Dennehy, M.K., Liebler, D.C., and Ischiropoulos, H. (2006). Identification of S-nitrosylation motifs by site-specific mapping of the Snitrosocysteine proteome in human vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 103, 7420-7425
  29. Hatfield, D.L., and Gladyshev, V.N. (2002). How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565-3576 https://doi.org/10.1128/MCB.22.11.3565-3576.2002
  30. Hook, D.W., and Harding, J.J. (1997). Inactivation of glyceraldehyde 3-phosphate dehydrogenase by sugars, prednisolone-21- hemisuccinate, cyanate and other small molecules. Biochim. Biophys. Acta 1362, 232-242 https://doi.org/10.1016/S0925-4439(97)00084-7
  31. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B.A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P.S., and Sigrist, C.J. (2008). The 20 years of PROSITE. Nucleic Acids Res. 36, D245-D249 https://doi.org/10.1093/nar/gkm1044
  32. Jacob, C., Giles, G.I., Giles, N.M., and Sies, H. (2003). Sulfur and selenium: The role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 42, 4742-4758 https://doi.org/10.1002/anie.200300573
  33. Jakob, U., Eser, M., and Bardwell, J.C. (2000). Redox switch of hsp33 has a novel zinc-binding motif. J. Biol. Chem. 275, 38302-38310 https://doi.org/10.1074/jbc.M005957200
  34. Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrixes. J. Mol. Biol. 292, 195-202 https://doi.org/10.1006/jmbi.1999.3091
  35. Jones, D.T., and Ward, J.J. (2003). Prediction of disordered regions in proteins from position specific score matrices. Proteins 53, 573-578 https://doi.org/10.1002/prot.10528
  36. Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA 105, 7147-7152
  37. Ilbert, M., Horst, J., Ahre16, S., Winter, J., Graf, P.C., Lilie, H., and Jakob, U. (2007). The redox-switch domain of Hsp33 functions as dual stress sensor. Nat. Struct. Mol. Biol. 14, 556-563 https://doi.org/10.1038/nsmb1244
  38. Iqbalsyah, T.M., Moutevelis, E., Warwicker, J., Errington, N., and Doig, A.J. (2006). The CXXC motif at the N terminus of an alpha-helical peptide. Protein Sci. 15, 1945-1950 https://doi.org/10.1110/ps.062271506
  39. Kim, H.Y., and Gladyshev, V.N. (2005). Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine- R-sulfoxide reductases. PLoS Biol. 3, e375 https://doi.org/10.1371/journal.pbio.0030375
  40. Kim, H.Y., Fomenko, D.E., Yoon, Y.E., and Gladyshev, V.N. (2006). Catalytic advantages provided by selenocysteine in methionine-Ssulfoxide reductases. Biochemistry 45, 13697-13704 https://doi.org/10.1021/bi0611614
  41. Kortemme, T., and Creighton, T.E. (1995). Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pha values in proteins of the thioredoxin family. J. Mol. Biol 253, 799-812 https://doi.org/10.1006/jmbi.1995.0592
  42. Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., and Gladyshev, V.N. (2003). Characterization of mammalian selenoproteomes. Science 300, 1439-1443 https://doi.org/10.1126/science.1083516
  43. Martin, J.L. (1995). Thioredoxin - fold for all reasons. Structure 3, 245-250 https://doi.org/10.1016/S0969-2126(01)00154-X
  44. Mates, J.M., Segura, J.A., Alonso, F.J., and Márquez, J. (2008). Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch. Toxicol. 82, 273-299 https://doi.org/10.1007/s00204-008-0304-z
  45. Moutevelis, E., and Warwicker, J. (2004). Prediction of pKa and redox properties in the thioredoxin superfamily. Protein Sci. 13, 2744-2752 https://doi.org/10.1110/ps.04804504
  46. Newman, S.F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W.M., Klein, J.B., Turner, D.M., and Butterfield, D.A. (2007). An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res. 85, 1506-1514 https://doi.org/10.1002/jnr.21275
  47. Pedone, E., Limauro, D., and Bartolucci, S. (2008). The machinery for oxidative protein folding in thermophiles. Antioxid Redox Signal. 10, 157-169 https://doi.org/10.1089/ars.2007.1855
  48. Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE. PE1
  49. Ridge, P.G., Zhang, Y., and Gladyshev, V.N. (2008). Comparative genomic analyses of copper transporters and cupropro-teomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3, e1378 https://doi.org/10.1371/journal.pone.0001378
  50. Salmeen, A., Andersen, J.N., Myers, M.P., Meng T.C., Hinks, J.A., Tonks, N.K., and Barford, D. (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769-773 https://doi.org/10.1038/nature01680
  51. Salsbury, FR. Jr., Knutson, S.T., Poole, L.B., and Fetrow, J.S. (2008). Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid. Protein Sci. 17, 299-312 https://doi.org/10.1110/ps.073096508
  52. Sanchez, R., Riddle, M., Woo, J., and Momand, J. (2008). Prediction of reversibly oxidized protein cysteine thiols using protein structure properties. Protein Sci. 17, 473-481 https://doi.org/10.1110/ps.073252408
  53. Stadtman, T.C. (1996). Selenocysteine. Annu. Rev. Biochem. 65, 83-100 https://doi.org/10.1146/annurev.bi.65.070196.000503
  54. Sun, J., Steenbergen, C., and Murphy, E. (2006). S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 8, 1693-1705 https://doi.org/10.1089/ars.2006.8.1693
  55. Tu, B.P., and Weissman, J.S. (2004). Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341-346 https://doi.org/10.1083/jcb.200311055
  56. Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., and Morgan, B.A. (2004). A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15, 129-139 https://doi.org/10.1016/j.molcel.2004.06.021
  57. von Mering, C., Jensen, L.J., Kuhn, M., Chaffron, S., Doerks, T., Kruger, B., Snel, B., and Bork, P. (2007). STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 35, D358-D362 https://doi.org/10.1093/nar/gkl825
  58. Wassef, R., Haenold, R., Hansel, A., Brot, N., Heinemann, S.H., and Hoshi, T. (2007). Methionine sulfoxide reductase A and a dietary supplement S-methyl-L-cysteine prevent Parkinson's-like symptoms. J. Neurosci. 27, 12808-12816 https://doi.org/10.1523/JNEUROSCI.0322-07.2007
  59. Wessjohann, L.A., Schneider, A., Abbas, M., and Brandt, W. (2007). Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 388, 997-1006 https://doi.org/10.1515/BC.2007.138
  60. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003). Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653 https://doi.org/10.1126/science.1080405
  61. Wood, M.J., Storz, G., and Tjandra, N. (2004). Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430, 917-921 https://doi.org/10.1038/nature02790
  62. Zhang F.L., and Casey P.J. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241-269 https://doi.org/10.1146/annurev.bi.65.070196.001325
  63. Zhang, Y., and Gladyshev, V.N. (2005). An algorithm for identifycation of bacterial selenocysteine insertion sequence elements and selenoprotein genes. Bioinformatics 21, 2580-2589 https://doi.org/10.1093/bioinformatics/bti400
  64. Zhang, Y., and Gladyshev, V.N. (2008a). Trends in selenium utilization in marine microbial world revealed through the analysis of the global ocean sampling (GOS) project. PLoS Genet. 4, e1000095 https://doi.org/10.1371/journal.pgen.1000095
  65. Zhang, Y., and Gladyshev, V.N. (2008b). Molybdoproteomes and evolution of molybdenum utilization. J. Mol. Biol. 379, 881-899 https://doi.org/10.1016/j.jmb.2008.03.051