기능성 단량체를 함유한 PLA의 전자선 조사에 의한 개질: 유변학적 성질 및 열적 특성

Modification of PLA by Irradiation of Electron Beam in the Presence of Functional Monomer: Rheological and Thermal Properties

  • 강경수 (영남대학교 디스플레이화학공학부) ;
  • 신부영 (영남대학교 디스플레이화학공학부)
  • Kang, Kyoung Soo (School of Display and Chemical Engineering, Yeungnam University) ;
  • Shin, Boo Young (School of Display and Chemical Engineering, Yeungnam University)
  • 투고 : 2007.09.17
  • 심사 : 2007.10.10
  • 발행 : 2008.02.28

초록

높은 용융강도가 요구되는 용도로 사용하기 위하여, 기능성 단량체인 glycidyl methacrylate(GMA)가 첨가된 poly(lactic acid)(PLA)를 전자선 조사로 개질하였다. GMA의 양과 전자선량을 조절하여 다양하게 개질된 PLA를 제조한 후 열적 특성, 용융 점탄성 성질 및 겔화도를 조사하였다. GMA를 첨가하지 않고 전자선 조사로만 개질한 PLA의 복합점도와 저장 탄성률은 원래의 PLA의 값보다 더 낮았고 조사량이 증가하면 더욱 낮아졌다. GMA을 0.1 phr 또는 0.3 phr로 첨가하여 개질한 PLA의 물성의 조사량에 따른 변화 경향은 GMA를 첨가하지 않고 개질한 PLA와 비슷하지만, 0.5 phr GMA를 함유하며 전자선 조사량 5 kGy로 개질된 PLA는 원래의 PLA보다 낮은 주파수 영역에서 3배나 큰 복합점도와 10배나 큰 저장탄성률을 보였다.

In order to fabricate a modified poly (lactic acid) (PLA) for applications requiring high melt strength, a PLA has been irradiated in the presence of functional monomer of glycidyl methacrylate (GMA). Samples were prepared with various contents of GMA and irradiation dosages, and were characterized by observing their thermal and melt viscoelastic properties and gel faction. The complex viscosity and storage modulus of the modified PLA without GMA were lower than those of the original PLA. Those of the modified PLA decreased with increasing dosage. In the case of the modified PLA containing 0.1 phr or 0.3 phr of GMA, their changing tendency with dosage was similar to the irradiated PLA without GMA. However, the 5 kGy irradiated PLA containing 0.5 phr of GMA showed the greatly enhanced complex viscosity and storage modulus, which were about 3 and 10 times higher than those of the original PLA at a frequency of 0.1 rad/s, respectively.

키워드

과제정보

연구 과제 주관 기관 : 한국환경기술진흥원

참고문헌

  1. Narayan, R., in K. C. Khemmani and C. Scholz(Eds.), Rationale, Drivers, and Technology Examples: Biobased & Biodegradable Polymer Materials, ACS, Washington DC(2006).
  2. Lee, J. R., Chun, S. W. and Kang, H. J., "Crystallization Behavior of Poly(lactic acid)/Poly($\varepsilon$-caprolactone) Blends)," Polymer (Korea), 27(4), 285-292(2003).
  3. Carlson, D., Dubois, P. and Narayan, R., "Free Radical Branching of Polylactide by Reactive Extrusion," Polym. Eng. Sci., 38(2), 311-321(1998). https://doi.org/10.1002/pen.10192
  4. Hogt, A. H., Meijer, J. and Jelenic, J., in S. Al-Malaik(Ed.), Modification of Polypropylene by Organic Peroxides: Reactive Modifiers for Polymers, 84-132(1996).
  5. Meister, J. J., Polymer Modification: Principles, Techniques, and Applications, Marcell Dekker, INC, New York(2000).
  6. Kim, D. J., Kang, H. J. and Seo, K. H., "Peroxide Modification of Poly(butylene adipate-co-succinate)", J. Appl. Polym. Sci., 81(3), 637-645(2001). https://doi.org/10.1002/app.1479
  7. Kim, D. J., Kim, W. S., Lee, D. H., Min, K. E., Kang, I. K., Jeon, I. R. and Seo, K. H., "Modification of Poly(butylene succinate) with Peroxide: Crosslinking, Physical and Thermal Properties, and Biodegradation", J. Appl. Polym. Sci., 81(5), 1115-1124(2001). https://doi.org/10.1002/app.1534
  8. Sodergárd, A., Niemi, M., Selin, J. F. and Näsman, H., "Changes in Peroxide Melt-Modified Poly(L-lactide), " Ind. Eng. Chem. Res., 34, 1203-1207(1995). https://doi.org/10.1021/ie00043a024
  9. Di, Y., Iannace, S., Maio, E. D. and Nicolais, L., "Reactively Modified Poly(lactic acid): Properties and Foam Processing," Macromol. Mater. Eng., 290(11), 1083-1090(2005). https://doi.org/10.1002/mame.200500115
  10. Sugimoto, M., Tanaka, T., Masubuchi, Y. and Takimoto, J., "Effect of Chain Structure on the Melt Rheology of Modified Polypropylene," J. Appl. Polym. Sci., 73(8), 1493-1500(1999). https://doi.org/10.1002/(SICI)1097-4628(19990822)73:8<1493::AID-APP18>3.0.CO;2-2
  11. Han, D. H., Jang, J. H., Kim, H. Y., Kim, B. N. and Shin, B. Y., "Manufacturing and Foaming of High Melt Viscosity of Polypropylene by using Electron Beam Radiation Technology," Polym. Eng. Sci., 46(4), 431-437(2006). https://doi.org/10.1002/pen.20470
  12. Han, D. H., Shin, S. H. and Petrov, S., "Crosslinking and Degradation of Polypropylene by Electron Beam Irradiation in the Presence of Trifunctional Monomers," Radiation Physics and Chemistry, 69(3), 239-244(2004). https://doi.org/10.1016/S0969-806X(03)00458-4
  13. Darwis, D., Nishimura, K., Mitomo, H. and Yosh, F., "Improvement of Processability of Poly($\varepsilon$-caprolactone) by Radiation Techniques," J. App. Polym. Sci., 74(7), 1815-1820(1999). https://doi.org/10.1002/(SICI)1097-4628(19991114)74:7<1815::AID-APP25>3.0.CO;2-X
  14. Yoshii, F., Darwis, D., Mitimo, H. and Makuuchi, K., "Crosslinking of Poly($\varepsilon$-caprolactone) by Radiation Technique and its Biodegradability", Radiation Physics and Chemistry, 57, 417-420(2000). https://doi.org/10.1016/S0969-806X(99)00449-1
  15. Yoshii, F., Suhartini, M., Nagasawa, N., Mitomo, H. and Kime, T., "Modification of Biodegradable Polymers by Radiation Crosslinking Technique with Polyfunctional Monomers," Nuclear Instruments and Methods in Physics Research B, 208, 370-373(2003). https://doi.org/10.1016/S0168-583X(03)00660-8
  16. Gupta, M. C. and Deshmukh, V. G., "Radiation Effects on Poly(lactic acid)," Polymer, 24(7), 827-830(1983). https://doi.org/10.1016/0032-3861(83)90198-2
  17. Van Krevelen, D. W., Properties of Polymers, Elsevier Sci. Pub. Com. INC, New York(1990).
  18. Jamshidi, K., Hyon, S. H. and Ikada, Y., "Thermal Characterization of Polylactides," Polymer, 29(12), 2229-2234(1988). https://doi.org/10.1016/0032-3861(88)90116-4
  19. Auras, R., Harte, B. and Selke, S., "An Overview of Polylactides as Packaging Materials," Macromol. Biosci., 4(9), 835-864(2004). https://doi.org/10.1002/mabi.200400043
  20. Yilmazer, U., Xanthos, M., Bayram, G.. and Tan, V., "Viscoelastic Characteristics of Chain Extended/branched and Linear Polyethylene Terephthalate Resins, " J. Appl. Polym. Sci., 75(1), 1371-1377 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1371::AID-APP8>3.0.CO;2-5
  21. Kim, E. S., Kim, B. C. and Kim, S. H., "Structural Effect of Linear and Star-shaped Poly(L-lactic acid) on Physical Properties," J. Polym. Sci., B: Polym. Phys., 42(6), 939-946(2004). https://doi.org/10.1002/polb.10685
  22. Yang, H. H., Han, C. D. and Kim, K., "Rheology of Miscible Blends of Poly(methyl methacrylate) with Poly(styrene-co-acrylonitrile) and with Poly(vinylidene fluoride)", Polymer, 35(7), 1503-1511(1994). https://doi.org/10.1016/0032-3861(94)90351-4
  23. Harrell, E. R. and Nakajima, N., "Modified Cole-Cole Plot Based on Viscoelastic Properties for Characterizing Molecular Architecture of Elastomers," J. Polym. Sci., 29(3), 995-1010(1984).
  24. Park, J. W. and Im, S. S., "Biodegradable Polymer Blends of Poly(L-lactic acid) and Gelatinized Starch", Polym. Eng. Sci., 40(12), 2539-2550(2000). https://doi.org/10.1002/pen.11384
  25. Che, H. G.., Kim, B. C., Im, S. S. and Han, Y. K., "Effect of Molecular Weight and Branch Structure on the Crystallization and Rheological Properties of Poly(butylene adipate)," Polym. Eng. Sci., 41(7), 1133-1139(2001). https://doi.org/10.1002/pen.10814
  26. Jiao, C., Wang, Z., Liang, X. and Hu, Y., "Non-isothermal Crystallization Kinetics of Silane Crosslinked Polyethylene," Polymer Testing, 24(1), 71-80(2005). https://doi.org/10.1016/j.polymertesting.2004.07.007
  27. Cleland, M. R., Park, L. A. and Cheng, S., "Applications for Radiation Processing of Materials," Nuclear Instrument and Methods in Physics Research, B208(7), 66-73(2003).
  28. Barroso, V. C. and Maia, J. M., "Influence of Long-chain Branching on the Rheological Behavior of Polyethylene in Shear and Extensional Flow," Polym. Eng. Sci., 45, 984-997(2005). https://doi.org/10.1002/pen.20356