초임계 반용매 재결정 공정을 이용한 Dextran 입자의 제조

Preparation of Dextran Microparticles by Using the SAS Process

  • 강동육 (전남대학교 공과대학 신화학소재공학과) ;
  • 민병준 (전남대학교 공과대학 환경공학과) ;
  • 노선균 (전남대학교 공과대학 환경공학과) ;
  • 강춘형 (전남대학교 공과대학 응용화학공학부)
  • Kang, Dong-Yuk (Department of Advanced Chemical, Chonnam National University) ;
  • Min, Byoung-Jun (Department of Environmental Engineering, Chonnam National University) ;
  • Rho, Seon-Gyun (Department of Environmental Engineering, Chonnam National University) ;
  • Kang, Choon-Hyoung (Department of Applied Chemical Engineering, Chonnam National University)
  • 투고 : 2008.05.02
  • 심사 : 2008.07.04
  • 발행 : 2008.10.31

초록

본 연구에서는 초임계 이산화탄소를 반용매로 하는 재결정 공정(SAS, Supercritical Anti-Solvent)을 이용하여 약물 전달시스템의 후보물질로 주목받고 있는 dextran의 미립자를 제조하였다. 용매로는 DMSO(dimethyl sulfoxide)를 사용하였으며, 공정변수인 온도(308.15~323.15 K), 압력(90~130 bar), 용질의 농도(10~20 mg/ml), 용액 주입속도(5.3~15.2 ml/min) 그리고 용질의 분자량(Mw=37,500, 400,000~500,000)이 미세입자 형성에 미치는 영향을 관찰하였다. 형성되는 미세입자의 크기는 용질 농도가 증가할수록 증가하였으나, 용액 주입속도와 압력은 입자 크기에 큰 영향을 미치지 않았다. 저분자량의 dextran의 경우에는 313.15 K에서 가장 작은 입자가 만들어졌으며, 고분자량의 dextran의 경우에는 $0.1{\sim}0.5{\mu}m$정도 크기의 입자가 만들어 졌으며 온도와 압력이 커질수록 입자의 크기도 증가하였다. 용질의 농도가 5 mg/ml인 경우, 분자량이 작은 dextran 으로는 입자를 제조할 수 없었으며 고분자량의 경우에는 용질 농도가 15 mg/ml 까지 증가하면 제조된 입자들이 서로 엉키는 경향을 보였다. 분자량이 작은 경우에는 낮은 농도에서는 재결정조에서 충분한 과포화도를 얻을 수 없어 침투성과 확산계수가 큼에도 불구하고 재결정화가 이루어지지 못하며, 분자량이 큰 고분자계의 높은 농도에서는 서로 상호작용하는 인력이 저분자에 비해 크게 증가하게 되어 입자들이 엉키게 되는 것으로 사료된다.

In this work, micro-sized dextran particles, which have recently been focused as one of the candidate materials for the Drug Delivery System(DDS), were prepared by means of the Supercritical Antisolvent (SAS) process with $CO_2$. With dimethyl sulfoxide(DMSO) as the solvent, effects of the operating variables such as temperature (308.15~323.15 K), pressure(90~130 bar), solute concentration(10~20 mg/ml), and the molecular weight of the solute(Mw=37,500, 450,000) on the size and morphology of the resulting particles were thoroughly observed. The higher solute concentration led to the larger particles, however, the injection velocity of the solution and pressure did not show significant effects on the resulting particle size. With dextran of the lower molecular weight, the smallest particles were obtained at 313.15 K. On the other hand, the size of the particles from the high molecular weight dextran ranged between $0.1{\sim}0.5{\mu}m$ with an incremental effect of the temperature and pressure. For the solute concentration of 5 mg/ml, the lower molecular weight dextran did not form discrete particles while aggregation of the particles appeared when the solute concentration exceeded 15 mg/ml for the higher molecular weight dextran. It is believed that if the solute concentration is too low, the degree of the supersaturation in the recrystallization chamber would not be sufficient for initiation of the nucleation and growth mechanism. Instead, the spinodal decomposition mechanism leads to formation of the island-like phase separation which appears similar to aggregation of the discrete particles. This effect would be more pronounced for the smaller molecular weight polymer system due to the narrower phase-splitting region.

키워드

참고문헌

  1. Seo, J.-H., Choi, B.-K. and Park, T.-K., "R&D Trend and Information Analysis for Drug Delivery System using Nanoparticles," Prospectives of Industrial Chemistry, 8(3), 60-67(2005)
  2. Icoz, D. Z., Moraru, C. I. and Kokini, J. L., "Polymer-polymer Interactions in Dextran Systems Using Thermal Analysis," Carbohydrate Polymers, 62(2), 120-129(2005) https://doi.org/10.1016/j.carbpol.2005.07.012
  3. Perez, Y., Wubbolts, F. E., Witkamp, G. J. and Jandsens, P. J., "Improved PCA Process for the Production of nano- and Microparticles of Polymers," AIChE J., 50(10), 2408-2417(2004) https://doi.org/10.1002/aic.10210
  4. Tomme, S. R. V., Steenbergen, M. J. V., Smedt, S. C. D., Nostrum, C. F. V. and Hennink, W. E., "Self-gelling Hydrogels Based on Oppositely Charged Dextran Microspheres," Biomaterials, 26(14), 2129-2135(2005) https://doi.org/10.1016/j.biomaterials.2004.05.035
  5. Maia, J., Ferreira, L., Carvalho, R., Ramos, M. A. and Gil, M. H., "Synthesis and Characterization of New Injectable and Degradable Dextran-based Hydrogels," Polymer, 46(23), 9604-9614(2005) https://doi.org/10.1016/j.polymer.2005.07.089
  6. Ginty, P. J., Whitaker, M. J., Shakesheff, K. M. and Howdle, S. M., "Drug Delivery Goes Supercritical," Materials Today, 8(8), 42-48(2005)
  7. Lee, Y.-W., "Design of Particles using Supercritical Fluids," HWAHAK KONHAK, 41(6), 679-688(2003)
  8. Krukonis, V., "Supercritical Fluid Nucleation of Difficult to Comminute Solids," The AIChE Annual Meeting, San Francisco(1984)
  9. Paulaitis, M. E., "Chemical Engineering at Supercritical Fluid Conditions," Ann Arbor Science(1983)
  10. Hyatt, J. M., Wong, R., Lahiere, J. and Johnston, K. P., "Modification of Supercritical Fluid Phase Behavior using Polar Cosolvents," Ind. Eng. Chem. Res., 26, 56-60(1987) https://doi.org/10.1021/ie00061a011
  11. Hanney, J. B. and Hogarth, J., "On the Solubility of Solids in Gases," Proc. Roy. Soc., 29, 324-329(1879)
  12. Masoud, B. and Sima, R., "Production of Micro- and Nano-comPosite Particles by Supercritical Carbon Dioxide," J. Supercritical Fluids, 40, 263-283(2007) https://doi.org/10.1016/j.supflu.2006.05.006
  13. Yeo, S.-D., Lim, G.-B., Debenedetti, P. G. and Bernstein, H., "Formation of Microparticulate Protein Powders Using a Supercritical Fluid Anti-Solvent," Biotech. Bioeng., 41, 341-346(1993) https://doi.org/10.1002/bit.260410308
  14. Schmitt, W. J., Salada, M. C., Shook, G. G. and Speaker, S. M., "Finely-Divided Powders by Carrier Solution Injection into a Near or Supercritical Fluid," AIChE J., 41, 2476-2486(1995) https://doi.org/10.1002/aic.690411113
  15. Chou, Y. H. and Tomasko, D. L., "GAS Crystallization of Polymerpharmaceutical Composite Particles," The 4th International Symposium on Supercritical Fluids, May, Sendai, Japan(1997)
  16. Reverchon, E., Della Porta, G. and Di Trolio, A., "Morphological Analysis of Nanoparticles Generated by SAS," Fourth Italian Conference on Supercritical Fluids and their Applications, September, Capri(1997)
  17. Reverchon, E., Della Porta, G., Celano, C., Pace, S. and Di Trolio, A., "Supercritical Anti-solvent Precipitation: a New Technique for Preparing Submicronic Yttrium Powders to Improve YBCO Superconductors," J. Material Res., 13(2), 284-289(1998) https://doi.org/10.1557/JMR.1998.0039
  18. Amaro-Gonzalez, D., Mabe, G., Zabaloy, M. and Brignole, E. A., "Gas Antisolvent Crystallization of Organic Salts From Aqueous Solutions," J. Supercritical Fluids, 17(3), 249-258(2000) https://doi.org/10.1016/S0896-8446(99)00056-X
  19. Chattopadhyay, P. and Gupta, R. B., "Supercritical $CO_2$ Based Production of Fullerene Nanoparticles," the 5th International Symposiumon Supercritical Fluids, April, Atlanta(2000)
  20. Hong, L., Bitemo, S. R., Gao, Y. and Yuan, W. K., "Precipitation of Microparticulate Organic Pigment Powders by Supercritical Antisolvent (SAS) Process," the 5th International Symposium on Supercritical Fluids, April, Atlanta(2000)
  21. Perez, Y., de Diego, F. E., Wubbolts, G. J., Witkamp, Th. W. and de Loos, P. J. Jansens, "Measurements of the Phase Behaviour of the System Dextran/DMSO/$CO_2$ at High Pressure," J. Supercritical Fluids, 35, 1-9(2005) https://doi.org/10.1016/j.supflu.2004.10.012
  22. Park, S.-J. and Yeo, S. D., "Recrystallization of Phenylbutazone Using Supercritical Fluid Antisolvent Process," Korean J. Chem. Eng., 25(3), 575-580 (2008) https://doi.org/10.1007/s11814-008-0097-z
  23. Kim, M. Y., Yoo, K.-P. and Lim, J. S., "Preparation of Poly(Lactic acid) Submicron Particles in Aerosol Solvent Extraction Using Supercritical Carbon Dioxide," Korean J. Chem. Eng., 24(5), 860-865(2007) https://doi.org/10.1007/s11814-007-0055-1
  24. Li, G., Chu, J., Song, E.-S., Row, K. H., Lee, K.-H. and Lee, Y.-W., "Crystallization of Acetaminophen Micro-particle Using Supercritical Carbon Dioxide," Korean J. Chem. Eng., 23(3), 482-487(2006) https://doi.org/10.1007/BF02706753