3변수 혼합 지수 확률밀도함수를 이용한 도시 강우 유출수 포착곡선의 작성

Urban Stormwater Capture Curve using 3-Parameter Mixed Exponential Probability Density Function

  • 한수희 (부경대학교 환경시스템공학부) ;
  • 박무종 (한서대학교 토목공학과) ;
  • 김상단 (부경대학교 환경시스템공학부)
  • Han, Suhee (Department of Environmental System Engineering, Pukyong National University) ;
  • Park, Moo Jong (Department of Civil Engineering, Hanseo University) ;
  • Kim, Sangdan (Department of Environmental System Engineering, Pukyong National University)
  • 투고 : 2008.04.30
  • 심사 : 2008.06.03
  • 발행 : 2008.07.30

초록

In order to design Non-point source management, the aspect of statistical features of the entire precipitation data should be focused since non-point source discharge is driven by continuous rainfall runoffs. 3-parameter mixed exponential probability density function is used to establish urban stormwater capture curve instead of previous single-parameter exponential PDF. Then, recent 10-year data in Busan are applied to establish the curve. The result shows that 3-parameter mixed PDF gives better resolution.

키워드

과제정보

연구 과제번호 : GIS 기반의 비점오염물질 발생량 예측 모델개발

연구 과제 주관 기관 : 환경부

참고문헌

  1. 김상단, 조덕준(2007). 비점오염원 관리를 위한 유출포착곡선. 한국물환경학회지, 23(6), pp. 829-836
  2. 윤용남(2008). 공업수문학, 청문각
  3. 조덕준(2007). 위험도 기반 지역별 정규 $CSO_{s}$ 곡선 설계에 관한 연구. 한국수자원학회논문집, 39, pp. 575-581 https://doi.org/10.3741/JKWRA.2006.39.7.575
  4. 최대규, 조덕준, 한수희, 김상단(2008) 3변수 혼합 지수 확률밀도함수를 이용한 도시지역 강우유출수의 해석적 확률모형 개선. 한국물환경학회지, 24(3), pp. 797-803
  5. 환경부(2006). 비점오염원관리 업무편람
  6. Adams, B. J. and Papa, F. (2000). Urban Stormwater Management Planning with Analytical Probabilistic Models. John Wiley & Sons, INC., U.S.A.
  7. Behera, P. K., Papa, F. and Adams, B. J. (1999). Optimization of regional storm water management system. Journal of Water Resources Planning and management, 125, pp. 107-144 https://doi.org/10.1061/(ASCE)0733-9496(1999)125:2(107)
  8. Driscoll, E. D., Palhegyi, G. E., Strecker, E. W. and Shelley, P. E. (1989). Analysis of storm events characteristics for selected rainfall gauges throughout the United States, U.S. Environmental Protection Agency, Washington, D.C.
  9. Foufoula-Georgiou, E. and Lettenmaier, D. P. (1987). A Markov renewal model for rainfall occurrences. Water Resources Research, 23, pp. 875-884 https://doi.org/10.1029/WR023i005p00875
  10. Georgakakos, K. P. and Kavvas, M. L. (1987). Precipitation analysis, modeling, and predicition in hydrology. Reviews of Geophysics, 25, pp. 163-178 https://doi.org/10.1029/RG025i002p00163
  11. Guo, J. C. Y. and Hughes, W. (2001). Storage volume and overflow risk for infiltration basin design. Journal of Irrigation and Drainage Engineering, 127, pp. 170-175 https://doi.org/10.1061/(ASCE)0733-9437(2001)127:3(170)
  12. Guo, J. C. Y. and Urbonas, R. B. (1996). Maximized detention volume determined by runoff capture ratio. Journal of Water Resources Planning and Management, 122, pp. 33-39 https://doi.org/10.1061/(ASCE)0733-9496(1996)122:1(33)
  13. Guo, J. C. Y. and Urbonas, R. B. (2002). Runoff Capture and Delivery Curves for Storm-Water Quality Control Designs. Journal of Water Resources Planning and Management, 128, pp. 208-215 https://doi.org/10.1061/(ASCE)0733-9496(2002)128:3(208)
  14. Hanson, C. L., Cumming, K. A., Woolhiser, D. A. and Richardson, C. W. (1994). Microcomputer program for daily weather simulations in the contiguous United States. USDA/ARA, ARS-114, pp. 38
  15. Milks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210, pp. 178-191 https://doi.org/10.1016/S0022-1694(98)00186-3
  16. Rodriguez-Iturbe, I., Gupta, V. K. and Waymire, E. (1984). Scale consideration in the modeling of temporal rainfall. Water Resources Research, 20, pp. 1611-1619 https://doi.org/10.1029/WR020i011p01611
  17. Smith, R. E. and Schreiber, H. A. (1974). Point processes of seasonal thunderstorm rainfall. Part 2: rainfall depth probabilities. Water Resources Researech, 10, pp. 418-423 https://doi.org/10.1029/WR010i003p00418
  18. Soil Conservation Service (1972). National Engineering Handbook, section 4, Hydrology. U.S. Dept. of Agriculture, Washington, D.C.