Human Vesicular Glutamate Transporters Functionally Complement EAT-4 in C. elegans

  • Lee, Dukgyu (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Jung, Sunki (HCC R&D Center) ;
  • Ryu, Jungmin (HCC R&D Center) ;
  • Ahnn, Joohong (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Ha, Ilho (IBST/Graduate Program in Neuroscience, Inje University)
  • Received : 2007.05.02
  • Accepted : 2007.08.08
  • Published : 2008.02.29

Abstract

The vesicular glutamate transporter (VGLUT) transports glutamate into pre-synaptic vesicles. Three isoforms of VGLUT have been identified in humans, but their functional differences remain largely unknown. EAT-4 is the only homologue of human VGLUT in C. elegans. Here we report that mutants of eat-4 exhibit hyperforaging behavior and that each of the isoforms of human VGLUT functionally rescues the defects in eat-4 worms.

Keywords

Acknowledgement

Supported by : Inje University

References

  1. Albertson, D.G. and Thomson, J.N. (1976). The pharynx of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 275, 299-325 https://doi.org/10.1098/rstb.1976.0085
  2. Avery, L. (1993). Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. J. Exp. Biol. 175, 283-297
  3. Bellocchio, E.E., Reimer, R.J., Fremeau, R.T., Jr., and Edwards, R.H. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957-960 https://doi.org/10.1126/science.289.5481.957
  4. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94
  5. Cho, J.H., Oh, Y.S., Park, K.W., Yu, J., Choi, K.Y., Shin, J.Y., Kim, D.H., Park, W.J., Hamada, T., Kagawa, H., et al. (2000). Calsequestrin, a calcium sequestering protein localized at the sarcoplasmic reticulum, is not essential for body-wall muscle function in Caenorhabditis elegans. J. Cell Sci. 113 (Pt 22), 3947-3958
  6. Daniels, R.W., Collins, C.A., Gelfand, M.V., Dant, J., Brooks, E.S., Krantz, D.E., and DiAntonio, A. (2004). Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J. Neurosci. 24, 10466-10474 https://doi.org/10.1523/JNEUROSCI.3001-04.2004
  7. Fremeau, R.T., Jr., Troyer, M.D., Pahner, I., Nygaard, G.O., Tran, C.H., Reimer, R.J., Bellocchio, E.E., Fortin, D., Storm- Mathisen, J., and Edwards, R.H. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247-260 https://doi.org/10.1016/S0896-6273(01)00344-0
  8. Fremeau, R.T., Jr., Burman, J., Qureshi, T., Tran, C.H., Proctor, J., Johnson, J., Zhang, H., Sulzer, D., Copenhagen, D.R., Storm-Mathisen, J., et al. (2002). The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. USA 99, 14488-14493
  9. Fujiyama, F., Furuta, T., and Kaneko, T. (2001). Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J. Comp. Neurol. 435, 379-387 https://doi.org/10.1002/cne.1037
  10. Gleason, K.K., Dondeti, V.R., Hsia, H.L., Cochran, E.R., Gumulak- Smith, J., and Saha, M.S. (2003). The vesicular glutamate transporter 1 (xVGlut1) is expressed in discrete regions of the developing Xenopus laevis nervous system. Gene Exp. Patterns 3, 503-507 https://doi.org/10.1016/S1567-133X(03)00057-7
  11. Gras, C., Herzog, E., Bellenchi, G.C., Bernard, V., Ravassard, P., Pohl, M., Gasnier, B., Giros, B., and El Mestikawy, S. (2002). A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J. Neurosci. 22, 5442-5451
  12. Hart, A.C., Sims, S., and Kaplan, J.M. (1995). Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 378, 82-85 https://doi.org/10.1038/378082a0
  13. Herzog, E., Bellenchi, G.C., Gras, C., Bernard, V., Ravassard, P., Bedet, C., Gasnier, B., Giros, B., and El Mestikawy, S. (2001). The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J. Neurosci. 21, RC181 https://doi.org/10.1523/JNEUROSCI.21-22-j0001.2001
  14. Higashijima, S., Mandel, G., and Fetcho, J.R. (2004). Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 1-18 https://doi.org/10.1002/cne.20278
  15. Kim, Y.I., Cho, J.H., Yoo, O.J., and Ahnn, J. (2004). Transcriptional regulation and life-span modulation of cytosolic aconitase and ferritin genes in C.elegans. J. Mol. Biol. 342, 421-433 https://doi.org/10.1016/j.jmb.2004.07.036
  16. Lee, J. I., and Ahnn, J. (2004). Calcineurin in animal behavior. Mol. Cells 17, 390-396
  17. Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., and Avery, L. (1999). EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in caenorhabditis elegans. J. Neurosci. 19, 159-167
  18. Maricq, A.V., Peckol, E., Driscoll, M., and Bargmann, C.I. (1995). Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378, 78-81 https://doi.org/10.1038/378078a0
  19. Mello, C., and Fire, A. (1995). DNA transformation. Methods Cell Biol. 48, 451-482 https://doi.org/10.1016/S0091-679X(08)61399-0
  20. Moechars, D., Weston, M.C., Leo, S., Callaerts-Vegh, Z., Goris, I., Daneels, G., Buist, A., Cik, M., van der Spek, P., Kass, S., et al. (2006). Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J. Neurosci. 26, 12055-12066 https://doi.org/10.1523/JNEUROSCI.2556-06.2006
  21. Moriyama, Y. and Hayashi, M. (2003). Glutamate-mediated signaling in the islets of langerhans: a thread entangled. Trends Pharmacol. Sci. 24, 511-517 https://doi.org/10.1016/j.tips.2003.08.002
  22. Ni, B., Rosteck, P.R., Jr., Nadi, N.S., and Paul, S.M. (1994). Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc. Natl. Acad. Sci. USA 91, 5607-5611
  23. Park, B.J., Lee, D.G., Yu, J.R., Jung, S.K., Choi, K., Lee, J., Kim, Y.S., Lee, J.I., Kwon, J. Y., Singson, A., et al. (2001). Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol. Biol. Cell 12, 2835-2845
  24. Quinlan, E.M. and Murphy, A.D. (1991). Glutamate as a putative neurotransmitter in the buccal central pattern generator of Helisoma trivolvis. J. Neurophysiol. 66, 1264-1271
  25. Takamori, S., Malherbe, P., Broger, C., and Jahn, R. (2002). Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep. 3, 798-803 https://doi.org/10.1093/embo-reports/kvf159
  26. Takamori, S., Rhee, J.S., Rosenmund, C., and Jahn, R. (2000). Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189-194 https://doi.org/10.1038/35025070
  27. Trudeau, L.E. and Castellucci, V F. (1993). Excitatory amino acid neurotransmission at sensory-motor and interneuronal synapses of Aplysia californica. J. Neurophysiol. 70, 1221-1230