Involvement of Corticotropin-releasing Factor Receptor 2β in Differentiation of Dopaminergic MN9D Cells

  • Jin, Tae-Eun (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Jang, Miae (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Kim, Hyunjung (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Choi, Yu Mi (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Cho, Hana (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Chung, Sungkwon (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute) ;
  • Park, Myoung Kyu (Department of Physiology, Sungkyunkwan University, School of Medicine and Center For Molecular Medicine, Samsung Biomedical Research Institute)
  • Received : 2007.11.27
  • Accepted : 2008.04.14
  • Published : 2008.09.30

Abstract

Corticotropin releasing factor (CRF) mediates various responses to stress through CRF receptors 1 and 2. CRF receptor 2 has two forms, $2{\alpha}$ and $2{\beta}$ each of which appears to have distinct roles. Here we used dopaminergic neuron-derived MN9D cells to investigate the function of CRF receptor 2 in dopamine neurons. We found that n-butyrate, a histone deacetylase inhibitor, induced MN9D cell differentiation and increased gene expression of all CRF receptors. CRF receptor $2{\beta}$ was minimally expressed in MN9D cells; however, its expression dramatically increased during differentiation. CRF receptor $2{\beta}$ expression levels appeared to correlate with neurite outgrowth, suggesting CRF receptor $2{\beta}$ involvement in neuronal differentiation. To validate this statement, we made a CRF receptor $2{\beta}$-overexpressing $MN9D/CRFR2{\beta}$ stable cell line. This cell line showed robust neurite outgrowth and GAP43 overexpression, together with MEK and ERK activation, suggesting MN9D cell neuronal differentiation. From these results, we conclude that CRF receptor $2{\beta}$ plays an important role in MN9D cell differentiation by activating the MEK/ERK signaling pathway.

Keywords

Acknowledgement

Supported by : Korea Ministry of Science and Technology, Korea Science and Engineering Foundation

References

  1. Aigner, L., and Caroni, P. (1995). Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J. Cell Biol. 128, 647-660 https://doi.org/10.1083/jcb.128.4.647
  2. Ardati, A., Goetschy, V., Gottowick, J., Henriot, S., Valdenaire, O., Deuschle, U., and Kilpatrick, G.J. (1999). Human CRF2 alpha and beta splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay. Neuropharmacology 38, 441-448 https://doi.org/10.1016/S0028-3908(98)00201-9
  3. Behan, D.P., De Souza, E.B., Lowry, P.J., Potter, E., Sawchenko, P., and Vale, W.W. (1995). Corticotropin releasing factor (CRF) binding protein: a novel regulator of CRF and related peptides. Front. Neuroendocrinol. 16, 362-382 https://doi.org/10.1006/frne.1995.1013
  4. Bittencourt, J.C., Vaughan, J., Arias, C., Rissman, R.A., Vale, W.W., and Sawchenko, P.E. (1999). Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 415, 285-312 https://doi.org/10.1002/(SICI)1096-9861(19991220)415:3<285::AID-CNE1>3.0.CO;2-0
  5. Chalmers, D.T., Lovenberg, T.W., and De Souza, E.B. (1995). Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340-6350 https://doi.org/10.1523/JNEUROSCI.15-10-06340.1995
  6. Chen, Y., Bender, R.A., Brunson, K.L., Pomper, J.K., Grigoriadis, D.E., Wurst, W., and Baram, T.Z. (2004). Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc. Natl. Acad. Sci. USA 101, 15782-15787
  7. Choi, H.K., Won, L.A., Kontur, P.J., Hammond, D.N., Fox, A.P., Wainer, B.H., Hoffmann, P.C., and Heller, A. (1991). Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res. 552, 67-76 https://doi.org/10.1016/0006-8993(91)90661-E
  8. Choi, H.K., Won, L., Roback, J.D., Wainer, B.H., and Heller, A. (1992). Specific modulation of dopamine expression in neuronal hybrid cells by primary cells from different brain regions. Proc. Natl. Acad. Sci. USA 89, 8943-8947
  9. Choi, W.S., Chun, S.Y., Markelonis, G.J., Oh, T.H., and Oh, Y.J. (2001). Overexpression of Calbindin-D28K induces neurite outgrowth in dopaminergic neuronal cells via activation of p38 MAPK. Biochem. Biophys. Res. Commun. 287, 656-661 https://doi.org/10.1006/bbrc.2001.5649
  10. Choi, Y.M., Kim, S.H., Chung, S., Uhm, D.Y., and Park, M.K. (2006). Regional interaction of endoplasmic reticulum $Ca^{2+}$ signals between soma and dendrites through rapid luminal $Ca^{2+}$ diffusion. J. Neurosci. 26, 12127-12136 https://doi.org/10.1523/JNEUROSCI.3158-06.2006
  11. Cibelli, G., Corsi, P., Diana, G., Vitiello, F., and Thiel, G. (2001). Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways. Eur. J. Neurosci. 13, 1339-1348 https://doi.org/10.1046/j.0953-816x.2001.01510.x
  12. Coste, S.C., Murray, S.E., and Stenzel-Poore, M.P. (2001). Animal models of CRH excess and CRH receptor deficiency display altered adaptations to stress. Peptides 22, 733-741 https://doi.org/10.1016/S0196-9781(01)00386-2
  13. Cowley, S., Paterson, H., Kemp, P., and Marshall, C.J. (1994). Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77, 841-852 https://doi.org/10.1016/0092-8674(94)90133-3
  14. Craighead, M.W., Boutin, H., Middlehurst, K.M., Allan, S.M., Brooks, N., Kimber, I., and Rothwell, N.J. (2000). Influence of corticotropin releasing factor on neuronal cell death in vitro and in vivo, Brain Res. 881, 139-143 https://doi.org/10.1016/S0006-8993(00)02759-1
  15. Dautzenberg, F.M., and Hauger, R.L. (2002). The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol. Sci. 23, 71-77 https://doi.org/10.1016/S0165-6147(02)01946-6
  16. Gottowik, J., Goetschy, V., Henriot, S., Kitas, E., Fluhman, B., Clerc, R.G., Moreau, J.L., Monsma, F.J., and Kilpatrick, G.J. (1997). Labeling of CRF1 and CRF2 receptors using the novel radioligand, [3H]-urocortin. Neuropharmacology 36, 1439-1446 https://doi.org/10.1016/S0028-3908(97)00098-1
  17. Grammatopoulos, D.K., Randeva, H.S., Levine, M.A., Katsanou, E.S., and Hillhouse, E.W. (2000). Urocortin, but not corticotropin- releasing hormone (CRH), activates the mitogen-activated protein kinase signal transduction pathway in human pregnant myometrium: an effect mediated via R1alpha and R2beta CRH receptor subtypes and stimulation of Gq-proteins. Mol. Endocrinol. 14, 2076-2091 https://doi.org/10.1210/me.14.12.2076
  18. Heller, A., Price, S., and Won, L. (1996). Glial-derived neurotrophic factor (GDNF) induced morphological differentiation of an immortalized monoclonal hybrid dopaminergic cell line of mesencephalic origin. Brain Res. 725, 132-136 https://doi.org/10.1016/0006-8993(96)00345-9
  19. Kim, Y., Park, M.K., Uhm, D.Y., and Chung, S. (2007). Modulation of T-type $Ca^{2+}$ channels by corticotropin-releasing factor through protein kinase C pathway in MN9D dopaminergic cells. Biochem. Biophys. Res. Commun. 358, 796-801 https://doi.org/10.1016/j.bbrc.2007.04.198
  20. Kishimoto, T., Pearse, R.V., Lin, C.R., and Rosenfeld, M.G. (1995). A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle. Proc. Natl. Acad. Sci. USA 92, 1108- 1112
  21. Korotkova, T.M., Brown, R.E., Sergeeva, O.A., Ponomarenko, A.A., and Haas, H.L. (2006). Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur. J. Neurosci. 23, 2677-2685 https://doi.org/10.1111/j.1460-9568.2006.04792.x
  22. Kruh, J. (1982). Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42, 65-82
  23. Lehnert, H., Schulz, C., and Dieterich, K. (1998). Physiological and neurochemical aspects of corticotropin-releasing factor actions in the brain: the role of the locus coeruleus. Neurochem. Res. 23, 1039-1052 https://doi.org/10.1023/A:1020751817723
  24. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25, 402-408 https://doi.org/10.1006/meth.2001.1262
  25. Lnenicka, G.A., Arcaro, K.F., and Calabro, J.M. (1998). Activitydependent development of calcium regulation in growing motor axons. J. Neurosci. 18, 4966-4972 https://doi.org/10.1523/JNEUROSCI.18-13-04966.1998
  26. Miyata, I., Shiota, C., Ikeda, Y., Oshida, Y., Chaki, S., Okuyama, S., and Inagami, T. (1999). Cloning and characterization of a short variant of the corticotropin-releasing factor receptor subtype from rat amygdala. Biochem. Biophys. Res. Commun. 256, 692-696 https://doi.org/10.1006/bbrc.1999.0392
  27. Miyata, I., Shiota, C., Chaki, S., Okuyama, S., and Inagami, T. (2001). Localization and characterization of a short isoform of the corticotropin-releasing factor receptor type 2alpha (CRF(2) alpha-tr) in the rat brain. Biochem. Biophys. Res. Commun. 280, 553-557 https://doi.org/10.1006/bbrc.2000.4112
  28. Morooka, T., and Nishida, E. (1998). Requirement of p38 mitogenactivated protein kinase for neuronal differentiation in PC12 cells. J. Biol. Chem. 273, 24285-24288 https://doi.org/10.1074/jbc.273.38.24285
  29. Oh, Y.J., Swarzenski, B.C., and O'Malley, K.L. (1996). Overexpression of Bcl-2 in a murine dopaminergic neuronal cell line leads to neurite outgrowth. Neurosci. Lett. 202, 161-164 https://doi.org/10.1016/0304-3940(95)12235-4
  30. Owens, M.J., and Nemeroff, C.B. (1991). Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43, 425-473
  31. Park, S.Y., Lee, J.Y., Choi, J.Y., Park, M.J., and Kim, D.S. (2006). Nerve growth factor activates brain-derived neurotrophic factor promoter IV via extracellular signal-regulated protein kinase 1/2 in PC12 cells. Mol. Cells 21, 237-243
  32. Park, M.K., Choi, Y.M., Kang, Y.K., and Petersen, O.H. (2008). The endoplasmic reticulum as an integrator of multiple dendritic events. Neuroscientist. 14, 68-77 https://doi.org/10.1177/1073858407305691
  33. Perrin, M.H., and Vale, W.W. (1999) Corticotropin releasing factor receptors and their ligand family. Ann. N. Y. Acad. Sci. 885, 312-328 https://doi.org/10.1111/j.1749-6632.1999.tb08687.x
  34. Perrin, M., Donaldson, C., Chen, R., Blount, A., Berggren, T., Bilezikjian, L., Sawchenko, P., and Vale, W. (1995). Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc. Natl. Acad. Sci. USA 92, 2969-2973
  35. Potter, E., Sutton, S., Donaldson, C., Chen, R., Perrin, M., Lewis, K., Sawchenko, P.E., and Vale, W. (1994). Distribution of corticotropin- releasing factor receptor mRNA expression in the rat brain and pituitary. Proc. Natl. Acad. Sci. USA 91, 8777-8781
  36. Suzuki-Mizushima, Y., Gohda, E., Okamura, T., Kanasaki, K., and Yamamoto, I. (2002). Enhancement of NGF- and cholera toxininduced neurite outgrowth by butyrate in PC12 cells. Brain Res. 951, 209-217 https://doi.org/10.1016/S0006-8993(02)03163-3
  37. Swinny, J.D., Metzger, F., Ijkema-Paassen, J., Gounko, N.V., Gramsbergen, A., and van der Want, J.J. (2004). Corticotropinreleasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro. Eur. J. Neurosci. 19, 1749-1758 https://doi.org/10.1111/j.1460-9568.2004.03279.x
  38. Van Pett, K., Viau, V., Bittencourt, J.C., Chan, R.K., Li, H.Y., Arias, C., Prins, G.S., Perrin, M., Vale, W., and Sawchenko, P.E. (2000). Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J. Comp. Neurol. 428, 191-212 https://doi.org/10.1002/1096-9861(20001211)428:2<191::AID-CNE1>3.0.CO;2-U
  39. Wang, Q., and Zheng, J.Q. (1998). cAMP-mediated regulation of neurotrophin-induced collapse of nerve growth cones. J. Neurosci. 18, 4973-4984 https://doi.org/10.1523/JNEUROSCI.18-13-04973.1998