Variation of Microfibril Angle Within Stems of Three Commercial Softwoods Grown in Korea

국내산 주요 침엽수 3종의 수간 내 마이크로피브릴 경사각의 변이

  • Eun, Dong-Jin (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Nam-Hun (College of Forest and Environmental Sciences, Kangwon National University)
  • 은동진 (강원대학교 산림환경과학대학) ;
  • 김남훈 (강원대학교 산림환경과학대학)
  • Received : 2008.03.14
  • Accepted : 2008.05.02
  • Published : 2008.07.25

Abstract

Radial and axial variations of microfibril angle (MFA) within stems of three commercial softwoods (Pinus densiflora, Pinus koraiensis and Pinus rigida) grown in Korea were examined by iodine crystal deposition method. The average MFA were $16.4^{\circ}$ in Pinus densiflora, 14.4, in Pinus koraiensis, and $26.2^{\circ}$ in Pinus rigida, respectively. The MFA in earlywood and latewood decreased with age to about 15~20 years, and then remained almost constant. The MFA of latewood was slightly smaller than that of earlywood. The MFA in the three species was a little smaller at the base of stem and decreased slightly with increasing tree height, but no significant difference by height was identified only in earlywood of Pinus rigida. Consequently, it was considered that the MFA could be an useful index for identifying juvenile wood and adult wood of Pinus densiflora, Pinus. koraiensis and Pinus rigida.

국내에서 생장한 주요 침엽수 3종(소나무, 잣나무, 리기다소나무)의 수간 내 마이크로피브릴 경사각(microfibril angle, MFA)의 축방향 및 방사방향 변이를 요오드 침적법에 의해 조사하였다. 각 수종의 MFA의 평균값은 소나무 $16.4^{\circ}$, 잣나무 $14.4^{\circ}$, 리기다소나무 $26.2^{\circ}$로 리기다소나무가 가장 크게 나타났다. 공시 수종의 MFA는 약 15~20 연륜까지 감소하다가 그 후 거의 안정된 경향을 보여 주었고 만재부의 MFA는 조재부의 MFA보다 다소 작은 경향이 있었다. 공시재료의 수고에 따른 MFA의 차이는 기부 부분에서 다소 크게 나타났으며 수고가 증가함에 따라 MFA는 감소하는 경향이 있었으나 리기다소나무 조재부는 예외였다. 따라서 MFA는 국내산 주요 침엽수재의 미성숙재와 성숙재를 구분하는 지표의 하나로 이용이 가능할 것으로 생각되었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Alteyrac, J., A. Cloutier, and S. Y. Zhang. 2006. Characterization of juvenile wood to transition age in black spruce (Picea mariana (Mill.) B. S. P.) at different stand densities and sampling heights. Wood Science and Technology. 40: 124-138. https://doi.org/10.1007/s00226-005-0047-4
  2. Bao, F. C., Z. H. Jiang, X. M. Jiang, X. X. Lu, X. Q. Luo, and S. Y. Zhang. 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Science and Technology, 35: 363-375. https://doi.org/10.1007/s002260100099
  3. Bendtsen, B. A. and J. F. Senft. 1986. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cottonwood and loblolly pine. Wood and Fiber Science. 18(1): 23-38
  4. Cave, I. D. and L. Hutt. 1969. The longitudinal young's modulus of Pinus radiata. Wood Science and Technology. 3: 40-48. https://doi.org/10.1007/BF00349983
  5. Erickson, H. D. and T. Arima. 1974. Douglas-fir wood quality studies. Part II: Effects of age and stimulated growth on fibril angle and chemical constituents. Wood Science and Technology. 8(4): 255-265. https://doi.org/10.1007/BF00351859
  6. Evans, R. and J. Ilic. 2001. Rapid prediction of wood stiffness from microfibril angle and density. Forest Product Journal. 51(3): 53-57.
  7. Fujiwara, S. and K. C. Yang. 2000. The relationship between cell length and ring width and circumferential growth rate in five canadian species. IAWA Journal. 21(3): 335-345. https://doi.org/10.1163/22941932-90000251
  8. Huang, C. L. 1995. Revealing fibril angle in wood sections by ultrasonic treatment. Wood and Fiber Science. 27(1): 49-54.
  9. Huang, C. L., N. P. Kutscha, G. J. Leaf, and R. A. Megraw. 1997. Comparison of microfibril measurement techniques. Microfibril angle in wood, Proceeding of the IAWA/IUFRO International Workshop on the significance of microfibril angle to wood quality, New Zealand, November pp. 177-205.
  10. Jahan, M. S. and S. P. Mun. 2005. Effect of tree age on the cellulose structure of nalita wood (Trema orientalis). Wood Science and Technology. 39: 637-373. https://doi.org/10.1007/s00226-005-0291-7
  11. Leaft, G. and D. Bremer. 1998. Longitudinal shrinkage and microfibril angle in loblolly pine. In: Microfibril angle in wood. B. G. Butterfield, ed. University of Canterbury Press, Christchurch, New Zealand, pp. 27-61,
  12. Lichtenegger, H., A. Reiterer, S. E. Stanzel-Tschegg, and P. Fratzl. 1999. Variation of cellulose microfibril angles in softwood and hardwoods: A possible strategy of mechanical optimization. Journal of Structural Biology. 128: 257-269. https://doi.org/10.1006/jsbi.1999.4194
  13. Matsumura, J. and B. G. Butterfield. 2001. Microfibril angles in the root wood of Pinus radiata and Pinus nigra. IAWA Journal. 22(1): 57-62. https://doi.org/10.1163/22941932-90000268
  14. Megraw, R. A., G. Leaf, D. Bremer, and C. Weyerhaeuser. 1997. Longitudinal shrinkage and microfibril angle in loblolly pine. Microfibril angle in wood, Proceeding of the IAWA/IUFRO International Workshop on the significance of microfibril angle to wood quality, New Zealand, November pp. 27-61.97.
  15. Sahlberg, U., L. Salmen, and A. Oscarsson. 1997. The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Science and Technology. 31: 77-86. https://doi.org/10.1007/BF00705923
  16. Senft, J. F. and B. A. Bendtsen. 1985. Measuring microfibrillar angle using light microscopy. Wood and Fiber Science. 17(4): 564-567.
  17. Shengzuo F., Y. Wenzhong, and T. YE. 2006. Clonal and within-tree variation in microfibril angle in poplar clones. New Forests. 31: 373-383. https://doi.org/10.1007/s11056-005-8679-7
  18. Wang, S. Y. and C. M. Chiu. 1988. The wood properties of Japanese cedar originated by seed vegetative reproduction in Taiwan. III. The variation of microfibril angles of tracheids. Mokuzai Gakkaishi 34(11): 881-888.
  19. Wardrop, A. B. 1965. Cellular differentiation in xylem. In: Cellular ultrastructure of woody plants. W. A. Cote, ed. Syracuse University Press, Syracuse, NY., pp. 61-97.
  20. Washusen, R., R. Evans, and S. Southerton. 2005. A study of Eucalyptus grandis and Eucalyptus globulus branch wood microstructure. IAWA Journal. 26(2): 203-210. https://doi.org/10.1163/22941932-90000112
  21. Ying, L., D. E. Kretschmann, and B. A. Bendtsen. 1994. Longitudinal shrinkage in fast-grown loblolly pine plantation wood. Forest Products Journal. 44(1): 58-62.
  22. Zhang, B., B. H. Fei, Y. Yan, and R. J. Zhao. 2007. Microfibril angle variability in masson pine (Pinus massoniana Lamb.). Forestry Studies in China. 9(1): 33-38. https://doi.org/10.1007/s11632-007-0006-2
  23. Zhu, J., T. Nakano, and Y. Hirakawa. 1998. Effect of growth on wood properties for Japanese larch (Larix kaempferi): Difference of annual ring structure between corewood and outerwood. Journal of Wood Science. 44: 392-396. https://doi.org/10.1007/BF01130453
  24. 김남훈, 이기영. 1998. 편백(Chamaecyparis obtusa E.) 수간내에서의 결정상태의 변이성. 목재공학 26(4): 20-28.
  25. 이소미, 김병로. 2005. 일본잎갈나무 수간내 재질변동에 관한 연구(II): 가도관 길이와 폭, 마이크로피브릴 경각, 강도의 납북방향 변동. 목재공학 33(1): 21-28.
  26. 이원용, 김남훈. 1992. X선회절법에 의한 주요 침.활엽수재의 미세구조 해석. 목재공학 20(1): 28-37.