References
- Henderson, R. F., Henderson, T. R. and Woodfin, B. H. (1970) Effects of D2O on the association-dissociation equilibrium in subunit proteins. J. Biol. Chem. 245, 3733-3737.
- Tehei, M., Madern, D., Pfister, C. and Zaccal, G. (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc. Natl. Acad. Sci. U.S.A. 98, 14356-14361. https://doi.org/10.1073/pnas.251537298
- Santra, M. K., Dasgupta, D. and Panda, D. (2005) Deuterium oxide promotes assembly and bundling of FtsZ protofilaments. Proteins 61, 1101-1110. https://doi.org/10.1002/prot.20671
- Verheul, M., Roefs, S. P. F. M. and Kruif, K. G. de. (1998) Aggregation of b-lactoglobulin and influence of D2O. FEBS Lett. 421, 273-276. https://doi.org/10.1016/S0014-5793(97)01581-0
- Chellgren, B. W. and Creamer, T. P. (2004) Effects of H2O and D2O on Polyproline II Helical Structure. J. Am. Chem. Soc. 126, 14734-14735. https://doi.org/10.1021/ja045425q
- Eker, E., Griebenow, K. and Schweitzer-Stenner, R. (2003) Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy. J. Am. Chem. Soc. 125, 8178-8185. https://doi.org/10.1021/ja034625j
- Kresheck, G. C., Schneider, H. and Scheraga, H. A. (1965) The effect of D2-O on the thermal stability of proteins. Thermodynamic parameters for the transfer of model compound from H2-O to D2-O. J. Phys. Chem. 69, 3132-3144. https://doi.org/10.1021/j100893a054
- Lemm, U. and Wenzel, M. (1981) Stabilisation of enzymes and antisera by heavy water. Eur. J. Biochem. 116, 441-445. https://doi.org/10.1111/j.1432-1033.1981.tb05355.x
- Chakrabarti, G., Kim, S., Gupta, M. L. Jr., Barton, J. S. and Himes, R. (1999) Stabilization of tubulin by deuterium oxide. Biochemistry 38, 3067-3072. https://doi.org/10.1021/bi982461r
- Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, Chapter 6, pp 185-210. Kluwer Academic/Plenum Publishers, New York, USA.
- Britto, P. J., Knipling, L., Mcphie, P. and Wolff, J. (2005) Thiol-disulphide interchange in tubulin: kinetics and the effect on polymerization. Biochem. J. 389, 549-558. https://doi.org/10.1042/BJ20042118
- Roychowdhury, M., Sarkar, N., Manna, T., Bhattacharyya, S., Sarkar, T., BasuSarkar, P., Roy, S. and Bhattacharyya, B. (2000) Sulfhydryls of tubulin, A probe to detect conformational changes of tubulin. Eur. J. Biochem. 276, 3469-3476.
- Chaudhuri, A. R., Khan, I. A. and Luduena, R. F. (2001) Detection of disulfide bonds in bovine brain tubulin and their role in protein folding and microtubule assembly in vitro: a novel disulfide detection approach. Biochemistry 40, 8834-8841. https://doi.org/10.1021/bi0101603
- Conway, B. E. (1981) Ionic Hydration in Chemistry and Biopaysics, Studies in Physical and Theoretical Chemistry, Vol.12. Elsevier Science, Amsterdam, The Netherlands, 12.
- Makhatadze, G. I., Clore, G. N. and Groneborn, A. N. (1995) Solvent isoptope effect and protein stability. Nat. Struct. Biol. 2, 852-855. https://doi.org/10.1038/nsb1095-852
- Panda, D., Chakrabarti, G., Hudson J., Pigg, K., Miller, H. P., Wilson, L. and Himes R. H. (2000) Suppression of microtubule dynamic instability and treadmilling by deuterium oxide. Biochemistry 39, 5075-5081. https://doi.org/10.1021/bi992217f
- Hamel, E. and Lin, C. (1981) Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch. Biochem. Biophys. 209, 29-40. https://doi.org/10.1016/0003-9861(81)90253-8
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cited by
- Effects of deuterium oxide on cell growth and vesicle speed in RBL-2H3 cells vol.2, 2014, https://doi.org/10.7717/peerj.553
- 4-Aminophenylalanine as a Biocompatible Nucleophilic Catalyst for Hydrazone Ligations at Low Temperature and Neutral pH vol.22, pp.10, 2011, https://doi.org/10.1021/bc2001566
- Smokeless Tobacco Extract (STE)-Induced Toxicity in Mammalian Cells is Mediated by the Disruption of Cellular Microtubule Network: A Key Mechanism of Cytotoxicity vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068224
- Exploring the influence of natural cosolvents on the free energy and conformational landscape of filamentous actin and microtubules pp.1463-9084, 2018, https://doi.org/10.1039/C8CP03041C