DOI QR코드

DOI QR Code

Characterization of flavone synthase I from rice

  • Lee, Yoon-Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Jeong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong-Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoong-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2008.01.31

Abstract

Flavones are synthesized from flavanones through the action of flavone synthases (FNSs). There are two FNSs, FNS I and II. FNS I is a soluble dioxygenase present in members of the Apiaceae family and FNS II is a membrane bound cytochrome P450 enzyme that has been identified in numerous plant species. In this study, we cloned OsFNS I-1 from rice by RTPCR, expressed it in E. coli, and purified the recombinant protein. By NMR analysis, we found that OsFNS I-1 converted the flavanone (2S)-naringenin into the flavone, apigenin. Moreover, we found that the cofactors oxoglutarate, $FeSO_4$, ascorbate and catalase are required for this reaction. OsFNS I-1 encodes a flavone synthase I. This is the first type I FNS I found outside of the Apiaceae family.

Keywords

References

  1. Havsteen, B. (2003) Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmaco. 32, 1141-1148. https://doi.org/10.1016/0006-2952(83)90262-9
  2. Winkel-Shirley, B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485-493. https://doi.org/10.1104/pp.126.2.485
  3. Martens, S. and Mithofer, A. (2005) Flavones and flavone synthases. Phytochemistry 66, 2399-2407. https://doi.org/10.1016/j.phytochem.2005.07.013
  4. Shon, Y. H., Park, S.-D. and Nam, K.-S. (2006) Effective chemopreventive activity of genistein against human breast cancer cells. J. Biochem. Mol. Biol. 39, 448-451. https://doi.org/10.5483/BMBRep.2006.39.4.448
  5. Usha, S., Johnson, I. M. and Malathi, R. (2005) Interaction of resveratol and genistein with nucleic acids. J. Biochem. Mol. Biol. 38, 198-205. https://doi.org/10.5483/BMBRep.2005.38.2.198
  6. Chatterjee, A., Saha, A. P. K., Gupta, P. D., Ganguly, S. N. and Sircar, S. M. (1976) Chemical examination of viable and non-viable rice seeds. Physiol. Plantarum 38, 307-308. https://doi.org/10.1111/j.1399-3054.1976.tb04009.x
  7. Stevenson, P. C., Kimmins, F. M., Grayer, R. J. and Raveendranath S. (1996) Schaftosides from rice phloem as feeding inhibitors and resistance factors to brown planthoppers, Nilaparvata lugens. Entomol. Exp. Appl. 80, 246-249. https://doi.org/10.1007/BF00194767
  8. Turnbull, J. J., Nakajima, J., Welford, R. W. D., Yamazaki, M., Saito, K. and Schorield, C. J. (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis. J. Biol. Chem. 279, 1206-1216. https://doi.org/10.1074/jbc.M309228200
  9. Martens, S., Forkmann, G., Britisch, L., Wellmann, F., Martern, U. and Lukacin, R. (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett. 544, 93-98. https://doi.org/10.1016/S0014-5793(03)00479-4
  10. Martens, S., Forkmann, G., Matern, U. and Lukacin, R. (2001) Cloning of parsley flavone synthase I. Phytochemistry 58, 43-46. https://doi.org/10.1016/S0031-9422(01)00191-1
  11. Kim, B. G., Lee, Y., Hur, H.-G., Lim, Y. and Ahn, J.-H. (2006) Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67, 387-394. https://doi.org/10.1016/j.phytochem.2005.11.022
  12. Miyahisa, I., Kaneko, M., Funa, N., Kawasaki, H., Kojima, H., Ohnishi, Y. and Horinouchi, S. (2006) Efficient production of (2S)-flavones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68, 498-504. https://doi.org/10.1007/s00253-005-1916-3

Cited by

  1. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery vol.263, 2017, https://doi.org/10.1016/j.plantsci.2017.07.001
  2. Organ-specific transcriptome profiling of metabolic and pigment biosynthesis pathways in the floral ornamental progenitor species Anthurium amnicola Dressler vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00808-2
  3. Flavones: From Biosynthesis to Health Benefits vol.5, pp.2, 2016, https://doi.org/10.3390/plants5020027
  4. Multifunctional flavonoid dioxygenases: Flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. vol.71, pp.10, 2010, https://doi.org/10.1016/j.phytochem.2010.04.016
  5. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants vol.68, pp.15, 2017, https://doi.org/10.1093/jxb/erx177
  6. Mannitol Stress Directs Flavonoid Metabolism toward Synthesis of Flavones via Differential Regulation of Two Cytochrome P450 Monooxygenases in Coleus forskohlii vol.7, 2016, https://doi.org/10.3389/fpls.2016.00985
  7. Functional characterization of aPlagiochasma appendiculatumflavone synthase I showing flavanone 2-hydroxylase activity vol.588, pp.14, 2014, https://doi.org/10.1016/j.febslet.2014.05.023
  8. Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism vol.5, 2014, https://doi.org/10.3389/fpls.2014.00524
  9. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation vol.6, pp.1, 2016, https://doi.org/10.1038/srep19245
  10. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype vol.236, pp.1, 2012, https://doi.org/10.1007/s00425-012-1598-x
  11. Methoxylated flavones: occurrence, importance, biosynthesis vol.15, pp.3, 2016, https://doi.org/10.1007/s11101-015-9426-0
  12. The Function and Catalysis of 2-Oxoglutarate-Dependent Oxygenases Involved in Plant Flavonoid Biosynthesis vol.15, pp.1, 2014, https://doi.org/10.3390/ijms15011080
  13. Compartmentation and Dynamics of Flavone Metabolism in Dry and Germinated Rice Seeds vol.55, pp.9, 2014, https://doi.org/10.1093/pcp/pcu095
  14. Genome-wide searches and molecular analyses highlight the unique evolutionary path of flavone synthase I (FNSI) in Apiaceae vol.61, pp.2, 2018, https://doi.org/10.1139/gen-2017-0117