수온변화에 따른 무지개송어(Oncorhynchus mykiss)의 산소소비, 아가미 호흡수 및 헤모글로빈 변화

Variation of Oxygen Consumption, Operculum Movement Number and Hemoglobin by Water Temperature Change in Rainbow Trout Oncorhynchus mykiss

  • 소상영 (전라북도내수면개발시험장) ;
  • 허준욱 (군산대학교 해양생명과학부) ;
  • 이정열 (군산대학교 해양생명과학부)
  • So, Sang-Yeong (Jeollabukdo Inland Water Fisheries Experiment Station) ;
  • Hur, Jun Wook (School of Marine Life Science, Kunsan National University) ;
  • Lee, Jeong-Yeol (School of Marine Life Science, Kunsan National University)
  • 투고 : 2008.10.15
  • 심사 : 2008.12.26
  • 발행 : 2008.12.31

초록

무지개송어(체장 $17.1{\pm}1.0cm$, 체중 $68.4{\pm}2.0g$)의 수온변화에 따른 생리적 반응의 단기적 지표로서 산소소비율, 호흡수, 헤모글로빈 함량 변화 및 내성 상한 온도를 조사하였다. 실험 수온은 $15^{\circ}C$를 중심으로 낮은 온도 쪽으로는 4, 5, 6, 7 및 $10^{\circ}C$, 높은 온도 쪽으로는 17, 20, 23, 26 및 $28^{\circ}C$에서 각각 적응시켜 산소소비량과 호흡수를 측정하였다. 수온의 하강과 상승은 $15^{\circ}C$에서 사육하던 무지개 송어를 1일 $1^{\circ}C$씩 순차 적응시키면서 각 수온에 7일간 적응시켰다. 무지개송어는 수온이 $23^{\circ}C$ 이상이 되면 산소소비율, 호흡수 및 헤모글로빈 함량에 변화를 가져오면서 체내 항상성이 급격하게 낮아지는 것으로 나타났다. 또한 생존 상한수온은 $28^{\circ}C$로 나타났다. 무지개송어가 무리없이 생활할 수있는 온도 범위는 $10{\sim}20^{\circ}C$로서 $10{\sim}15^{\circ}C$의 낮은 온도에서는 낮은 온도쪽으로, $15{\sim}20^{\circ}C$의 높은 온도에서는 높은 온도쪽으로 $5^{\circ}C$ 이상 급격한 변화를 주지 않는 것이 무지개송어의 생리활력에 현저한 변화가 나타나지 않는 것으로 조사되었다.

The objective of this investigation was to examine oxygen consumption (OC) and operculum movement number (OMN) of rainbow trout Oncorhynchus mykiss as a function of changes in water temperature (WT). The WT of the rearing facility was increased from $4^{\circ}C$ to $28^{\circ}C$ stepwise at $1^{\circ}C$ day at each WT (5, 10, 15, 17, 20, 23, 26, and $28^{\circ}C$) then OC and OMN were measured. The OC of the fish increased linearly with WT: O=25.0240 WT+17.5400 in the range of $4{\sim}23^{\circ}C$ However, at 26 and $28^{\circ}C$ the OC declined to around the level at $10^{\circ}C$. The OMN also increased linearly with temperature: OMN=4.4847 WT+59.2150 in the range of $4{\sim}23^{\circ}C$ but at 26 and $28^{\circ}C$ the OMN of the fish dropped slightly. The OC and OMN of the fish showed peak at $23^{\circ}C$ with the lowest values at $4^{\circ}C$. In the range of $4{\sim}23^{\circ}C$, the relationship between OC and OMN of the fish was expressed as a linear equation: OC=0.0923 OMN-308.2100. The OC of fish transferred from $15^{\circ}C$ to certain temperatures without acclimation showed a lower OC at 5 and $10^{\circ}C$ but above $15^{\circ}C$ the OC increased/decreased with temperature. The trout died in temperatures above $28^{\circ}C$ even when acclimated step by step with a $1^{\circ}C$ day increase in WT. In this experiment, a negative physiological changs occurred in the experimental fish at $23^{\circ}C$ suggesting that the optimal physiological temperature range of rainbow trout is $10{\sim}20^{\circ}C$.

키워드

참고문헌

  1. 김인배. 2000. 어류양식학. 도서출판구덕, 부산, 433pp.
  2. 박성우.오명주. 2001. 수족혈액학. 대전, 212pp.
  3. 이일남. 1990. 송어양식장 적지선정. 한국송어양식 25주년 기념집, 한국송어양식협회, 서울, pp. 187-191
  4. 이정열.김덕배. 2005. 급격한 염분변화에 따른 황복의 산소소비와 질소배설. 한국양식학회지, 18: 45-51
  5. 이정열.허준욱. 2004. 뱀장어, Anguilla japonica의 산소소비, 암모니아 배설 및 혈액성상에 미치는 진동의 영향. 한국양식학회지, 17: 262-267
  6. 허준욱. 2002. 인위적 스트레스에 대한 양식어류의 생리학적 반응. 부경대학교 대학원 박사학위논문, 196pp.
  7. Barton, B.A. and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis., 1: 3-26 https://doi.org/10.1016/0959-8030(91)90019-G
  8. Bergheim, A., J.C. Simon and H. Liltved. 1998. A system for the treatment of sludge from land-based fish-farms. Aquat. Living Resour., 11: 279-287 https://doi.org/10.1016/S0990-7440(98)80013-2
  9. Brett, J.R. 1970. Temperature-Fishers. In: Kinne, O. (ed.) Marine Ecology. Wiley-Interscience, Chichester, pp. 515-616
  10. Brett, J.R. and N.R. Glass. 1973. Oxygen consumption and critical swimming speeds of sockeye salmon (Oncorhynchus nerka) in relation to size and temperature. J. Fish. Res. Bd. Can., 30: 379-387 https://doi.org/10.1139/f73-068
  11. Brett, J.R. and T.D.D. Groves. 1979. Physiological energetics. In: Hoar, W.S., D.J. Randall and J.R. Brett (eds.), Fish Physiology. Academic Press, New York, pp. 279-352
  12. Buentello, J.A., W.H. Neill and D.M. Gatlin III. 2000. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182: 339-352 https://doi.org/10.1016/S0044-8486(99)00274-4
  13. Carlson, J.K. and G.R. Parsons. 2003. Respiratory and hematological responses of the bonnethead shark, Sphyrna tiburo, to acute changes in dissolved oxygen. J. Exp. Mar. Biol. Ecol., 294: 15-26 https://doi.org/10.1016/S0022-0981(03)00237-5
  14. Chang, Y.J., M.H. Jeong, B.H. Min, W.H. Neill and L.P. Fontaine. 2005. Effects of photoperiod, temperature, and fish size on oxygen consumption in the black porgy Acanthopagrus schlegeli. J. Fish. Sci. Technol., 8: 142-150 https://doi.org/10.5657/fas.2005.8.3.142
  15. Erez, J., M.D. Krom and T. Neuwirth. 1990. Daily oxygen variations in marine fish ponds, Elat, Israel. Aquaculture, 84: 289-305 https://doi.org/10.1016/0044-8486(90)90094-4
  16. Forsberg, O.I. 1994. Modelling oxygen consumption rates of postsmolt Atlantic salmon in commercial-scale land-based farms. Aquacult. Int., 2: 180-196
  17. Hazel, J.R. 1993. Thermal biology. In: David H. Evans (ed.), The Physiology of Fishes. CRC Press, Boca Raton, pp. 427-467
  18. Itazawa, Y. and I. Hanyu. 1991. Fish Physiology. Koseisha-Koseikaku, Tokyo, Japan, 621pp.
  19. Jobling, M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20: 501-516 https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  20. Kawamoto, N. 1977. Fish Physiology. Koseisha-Koseikaku, Tokyo, Japan. 605pp.
  21. Kim, I.N., Y.J. Chang and J.Y. Kwon. 1995. The patterns of oxygen consumption in six species of marine fish. J. Kor. Fish. Soc., 28: 373-381
  22. Perry, S.F. and S.D. Reid. 1993. $\beta$-adrenergic signal transduction in fish: interactive effects of catecholamines and cortisol. Fish. Physiol. Biochem., 11: 195-203 https://doi.org/10.1007/BF00004567
  23. Prosser, C.L. 1973. Temperature. In: Prosser C.L. (ed.), Comparative Animal Physiology. Saunders, PA, pp. 362-428
  24. Rodrigues, A.L., M.L. Bellinaso and T. Dick. 1989. Effect of some metal ions on blood and liver delta-aminolevulinate dehydratase of Pimelodis maculata Pisces, Pimelodidae. Comp. Biochem. Physiol., 94: 65-72 https://doi.org/10.1016/0305-0491(89)90012-6
  25. Schreck, C.B. 1982. Stress and rearing of salmonids. Aquaculture, 28: 241-249 https://doi.org/10.1016/0044-8486(82)90026-6
  26. Schreck, C.B and P.B. Moyle. 1990. Methods for fish biology. American Fisheries Society, Bethesda, Maryland, pp. 1-684
  27. Shamseldin, A.A., J.S. Clegg, C.S. Friedman, G.N. Cherr and M.C. Pillai. 1997. Induced thermotolerance in the pacific oyster, Crassostrea gigas. J. Shellfish. Res., 16: 487-491
  28. Via, J.D., P. Villani, E. Gasteiger and H. Niederstatter. 1998. Oxygen consumption in sea bass fingerling Dicentrarchus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169: 303-313 https://doi.org/10.1016/S0044-8486(98)00375-5
  29. Wi, J.H. and Y.J. Chang. 1976. A basic study on transport of live fish (I). Bull. Fish. Res. Dev. Agency, Korea, 15: 91-108
  30. Witeska, M., B. Jezierska and J. Wolnicki. 2006. Respiratory and hematological response of tench, Tinca tinca (L.) to a shortterm cadmium exposure. Aquaculture International, 14: 141-152 https://doi.org/10.1007/s10499-005-9020-3
  31. Withey, K.G. and R.L. Saunders. 1973. Effect of reciprocal photoperiod regime on standard rate of oxygen consumption of postsmolt Atlantic salmon (Salmo salar). J. Fish. Res. Bd. Can., 30: 1898-1900 https://doi.org/10.1139/f73-307
  32. Xie, X. and R. Sun. 1990. The bioenergetics of the southern catfish (Silurus meridionslia Chen). I. Resting metabolic rate as a function of body weight and temperature. Physiol. Zool., 63: 1181-195 https://doi.org/10.1086/physzool.63.6.30152639
  33. Zakes, Z., K. Demska-Zakes, P. Jarocki and K. Stawecki. 2006. The effect of feeding on oxygen consumption and ammonia excretion of juvenile tench Tinca tinca (L.) reared in a water recirculating system. Aquaculture International, 14: 127- 140 https://doi.org/10.1007/s10499-005-9019-9