Rhizofiltration Process with Helianthus annuss L., Phaseolus vulgaris var., and Brassica juncea (L.) Czern. to Remediate Uranium Contaminated Groundwater

해바라기, 갓, 강낭콩을 이용한 수생법(Rhizofiltration)의 우라늄으로 오염된 지하수 정화 효율 규명

  • Yang, Min-June (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Min-Hee (Department of Environmental Geosciences, Pukyong National University)
  • 양민준 (부경대학교 환경해양대학 환경지질과학과) ;
  • 이민희 (부경대학교 환경해양대학 환경지질과학과)
  • Published : 2008.08.31

Abstract

The uranium removal efficiency of rhizofiltration was investigated in lab scale experiment. Three plants such as sunflower (Helianthus annuus L.), bean (Phaseolus vulgaris var.), and Indian mustard (Brassica juncea (L.) Czern.) were cultivated in artificially contaminated solution by uranium at 30 ${\mu}g$/L and 80 ${\mu}g$/L for 72 hours. The removal efficiencies of three cultivars were calculated from the ICP/MS analysis of uranium mass in solution and the plant. For Helianthus annuus L., more than 80% of initial uranium were removed from the solution and the uranium concentration of residual solution maintained lower than 10 ${\mu}g$/L. For Phaseolus vulgaris var. and Brassica juncea (L.) Czern., their uranium removal efficiencies ranged from 60 to 80%. Even the uranium concentration of solution was higher than 500 ${\mu}g$/L, these cultivars removed more than 70% of initial uranium by rhizofiltration, suggesting that the rhizofiltration has a great capability to remove uranium in the contaminated groundwater. The removal efficiency of rhizofiltration by using Brassica juncea (L.) Czern decreased from 83% to 42% with the increase of pH in solution. From the results of the analysis for the uranium accumulation in plants, 99% of uranium transferred into the plant from solution were accumulated in the root and only 1% of uranium existed in the shoot part (including leaves), suggesting that the cost and the time to treat massive grown plants after the rhizofiltration could be dramatically cut down because only their root parts needs to be treated. Finally, the genuine groundwater having high uranium concentration (81.4 ${\mu}g$/L), sampled from Daejoun area, was used in the experiment. The uranium removal efficiency of Helianthus annuus L. for the real groundwater was higher than 95%, investigating that the rhizofiltration is the very useful method to remediate uranium contaminated groundwater.

우라늄으로 오염된 지하수를 정화하기 위하여 해바라기(Sunflower; Helianthus annuus L.), 강낭콩(Bean; Phaseolus vulgaris var.), 그리고 갓(Indian mustard; Brassica juncea (L.) Czern.)을 이용한 수생법(Rhizofiltration)의 우라늄 제거 효율을 규명하기위한 실내 실험을 실시하였다. 안정우라늄 표준 용액을 사용하여 초기 농도를 30 ${\mu}g$/L와 80 ${\mu}g$/L로 적정한 인공오염지하수를 대상으로 72시간 수생법을 실시하여 일정 시간 간격으로 오염지하수의 우라늄농도를 측정함으로써 시간에 따른 식물의 우라늄 제거 효율을 계산하였다. 해바라기의 경우 수생법 72시간 내에 인공오염수 내 우라늄의 81%와 89%가 제거되었으며, 강낭콩은 72%와 80% 제거율을 나타내었고, 갓의 경우에는 80%와 60%가 제거되어 수생법의 우라늄 제거 효율이 매우 높은 것으로 나타났다. 초기 우라늄 농도가 500 ${\mu}g$/L 이상(미국 EPA 수질허용한계농도인 30 ${\mu}g$/L 보다 18배 이상)되는 인공오염수를 대상으로 수생법을 실시한 결과 해바라기, 강낭콩, 갓의 경우 각각 97%, 70%, 77%의 높은 제거 효율을 나타내어 우라늄으로 심각하게 오염된 지하수의 경우에도 수생법을 적용할 수 있는 것으로 나타났다. 인공 오염수의 pH에 따른 수생법의 우라늄 제거 효율 변화 실험 결과, 오염수의 pH가 증가할 수 록 우라늄 제거 효율은 감소하였으며, 갓의 경우 pH 3에서 pH 9로 증가함에 따라 제거 효율은 83%에서 42%로 감소하였다. 실험 후 식물에 농축된 우라늄량을 습식분해법을 이용하여 부위별로 측정한 결과, 식물로 이동한 우라늄의 99%가 뿌리에 농축되어 있는 것으로 나타나, 수생법을 적용한 후 성장한 오염식물을 처리하는 경우 농축이 심한 뿌리 부분만을 후처리함으로써 복원 비용과 시간을 절감할 수 있는 것으로 나타났다. 마지막으로 우라늄 농도가 81.4 ${\mu}g$/L인 대전지역에 위치한 천정 지하수를 대상으로 수생법을 실시한 결과, 해바라기의 경우 인공오염지하수 실험 결과와 비슷한 제거 효율이 95.2%인 것으로 나타나, 친환경 정화방법인 수생법에 의한 우라늄 오염지하수 처리 방법이 실제 오염 현장에서 효과적으로 적용될 수 있을 것으로 판단되었다.

Keywords

References

  1. 국립환경연구원, 2001, 지하수중 방사성물질 함유실태에 관한 조사연구, 최종 보고서
  2. 김도희, 1993, 우리나라 주요온천의 수질특성과 유형분류에 관한 연구, 건국대학교 교육대학원 석사 학위 논문
  3. 김종환, 1982, 한국의 지질과 광물자원, 제 15장 우라늄, 연세대김옥준교수 정년퇴입기념 논문집, 454-458
  4. 한국소비생활연구원, 먹는물의 방사능물질 유해성여부에 관한 대토론회, 1998
  5. 한정희, 박계헌, 1996, 대전 지역 지하수에 함유된 우라늄 및 라돈의 함량, 자원환경지질, 29, 589-595
  6. Choy, C.C., Korfiatis, G.P., and Meng, X., 2006, Removal of depleted uranium from contaminated soils, J. Hazard. Mater., 136, 53-60 https://doi.org/10.1016/j.jhazmat.2005.11.011
  7. Cornish, J.E., 1995, Evaluation of in situ phytoremediation of uranium-contaminated soil in Ohio and Montana, The Hazardous Management '95 Conf., Tucson, AZ
  8. Dickin, A.P., 1997, Radiogenic Isotope Geology, Cambridge University Press, UK, p. 490
  9. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K.C., and Ensley, B., 1997, Removal of Uranium from Water Using Terrestrial Plants, Environ. Sci. Technol., 31, 3468-3474 https://doi.org/10.1021/es970220l
  10. Dushenkov, V., Kumar, P.B.A.N., Motto, H., and Raskin, I., 1995, Rhizofiltration : The use of plants to remove heavy metals from aqueous streams, Environ. Sci. Technol. 29, 1239-1245 https://doi.org/10.1021/es00005a015
  11. Ebbs, S., Brady, D., Norvell, W., and Kochian, L., 2001, Uranium speciation, Plant uptakes, and Phytoremediation, Practice periodical of hazardous, toxic, and radioactive waste management, 5, 130-135 https://doi.org/10.1061/(ASCE)1090-025X(2001)5:3(130)
  12. EPA, 1993, Integrated Risk Information system (IRIS) on Uranium, Soluble Salt, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of research and development, Cincinnati, OH
  13. Francis, C.W., 1973, Plutonium mobility in soil and uptake by plants : A review, J. Environ. Qual., 2(1), 67-70 https://doi.org/10.2134/jeq1973.2167
  14. Francis, C.W., Mattus, A.J., Elless, M.P., and Timpson, M.E., 1993, Carbonate-and citrate-based selective leaching of uranium from uranium-contaminated soils, in: Removal of Uranium from Uranium-Contaminated Soils, Phase I: Bench-Scale Testing, ORNL-6762, Oak Ridge National Laboratory, Oak Ridge, TN
  15. Fuhrmann, M., Lasat, M.M., Ebbs, S.D., Kochian, L.V., and Cornish, J., 2002, Uptake of Cesium-137 and Strontium-90 from Contaminated Soil by Three Plant Species; Application to Phytoremediation, J. Environ. Qual., 31, 904-909 https://doi.org/10.2134/jeq2002.0904
  16. Huang, F.Y.C., Brady, P.V., Lindgren, E.R., and Guerra, P., 1998, Biodegradation of Uranium-Citrate Complexes: Implications for Extraction of Uranium from Soils, Environ. Sci. Technol., 32(3), 379-382 https://doi.org/10.1021/es970181d
  17. Huang, J.W., Blaylock, M.J., Kapulnik, Y., and Ensley, B.D., 1998, Phytoremediation of Uranium-Contaminated Soils: Role of Organic Acids in Triggering Uranium Hyperaccumulation in Plants, Environ. Sci. Technol., 32(13), 2004-2008 https://doi.org/10.1021/es971027u
  18. Kantar, C. and Honeyman, B.D., 2006, Citric acid enhanced remediation of soils contaminated with uranium by soil flushing and soil washing, J. Environ. Eng., 132(2), 247-255 https://doi.org/10.1061/(ASCE)0733-9372(2006)132:2(247)
  19. NIAST, 2000, Methods of soil and plant analysis, National Institute of Agricultural Science and Technology, Suwon, Korea
  20. Nishita, H., Wallace, A., and Romney, E.M., 1978, Radionuclide uptake by plants, U.S. Nuclear Regulatory Commission, NUREG/CR0336, UCLA 12-1158
  21. Raskin, I. and Ensley, B.D., 2000, Phytoremediation of Toxic Metals, John Willey & Sons, Inc.
  22. Saling, J.H. and Fentiman, A.W., 2001, Radioactive Waste Management, Taylor & Francis Group, 2nd ed., NY, p. 352
  23. Schulz, R.K., 1965, Soil chemistry of radionuclides, Health Phys, 11, 1317-1324 https://doi.org/10.1097/00004032-196512000-00008
  24. Seaman, J.C., Meehan, T., and Bertsch, P.M., 2001, Immobilization of cesium-137 and uranium in contaminated sediments using soil amendments, J. Environ. Qual., 30, 1206-1213 https://doi.org/10.2134/jeq2001.3041206x
  25. Shanbhag, P.M. and Choppin, G.R., 1981, Binding of Uranyl by humic acid, J. Inorg. Nucl. Chem., 43, 3368-3372
  26. Terry, N. and Banuelos, G., 2000, Phytoremediation of Contaminated Soil and Water, Lewis Publishers