DOI QR코드

DOI QR Code

효율적인 하수관거 개량을 위한 의사결정모형의 개발

Development of a Decision Making Model for Efficient Rehabilitation of Sewer System

  • 이정호 (고려대학교 공과대학 건축.사회환경공학과) ;
  • 전환돈 (한밭대학교 토목공학과) ;
  • 주진걸 (고려대학교 공과대학 건축.사회환경공학과) ;
  • 김중훈 (고려대학교 공과대학 건축.사회환경공학과)
  • Lee, Jung-Ho (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Jun, Hwan-Don (Dept. of Civil Engineering, Hanbat National University) ;
  • Joo, Jin-Gul (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Kim, Joong-Hoon (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 발행 : 2008.02.29

초록

하수관거 개량사업의 주된 목적은 Inflow/Infiltration (I/I)를 제거 및 통수능력 확보이다. 최근 노후 하수관거의 개 보수 및 신설 사업이 활발히 이루어지고 있으나 현재의 사업들은 관거 데이터의 부족, 유량 및 수질 자료의 장기적인 측정 미비 등으로 인하여 효율적인 사업을 진행시키기에 무리가 있다. 본 연구에서는 하수관거 개량사업을 보다 효율적으로 진행시키기 위하여 Rehabilitation Weighting Model (RWM)과 Rehabilitation Priority Model (RPM)로 구성된 의사결정모형을 개발하였다. RWM은 시간 및 예산상의 제약으로 인하여 주요 지점에서만 관측되는 I/I를 상류의 각 관거별로 I/I를 산정하며, 관거별 I/I는 Analytic Hierarchy Process (AHP)를 통하여 산정된 8개 결함항목별 가중치에 따라서 결정된다. RPM은 Genetic Algorithm (GA)를 이용하여 소유역별 최적개량우선순위를 산정한다. 이것은 공사 기간 중 발생하는 I/I를 최소화시키기 위한 소유역별 공사 순서를 설정함으로써 하수처리장의 처리비용을 절감시킴으로써 하수관거 개량사업의 효율적인 시행을 위한 판단 기준을 제시해준다.

The objective of sewer rehabilitation is to improve its function while eliminating inflow/infiltration (I/I) and insufficient carrying capacity (ICC). Such rehabilitation efforts, however, have not been particularly successful due to a lack of sewer data and unsystematic field practices. The present study aimed to solve these problems by developing a decision making model consisting of two models: the rehabilitation weighting model (RWM) and the rehabilitation priority model (RPM). In RWM, the I/I of each pipe in a drainage district is estimated according to various defects, with each defect given an individual weighting factor using an analytic hierarchy process (AHP). RPM determines the optimal rehabilitation priority (ORP) using a genetic algorithm (GA). The developed models can be used to overcome the problems associated with unsystematic practices and, in practice, as a decision making tool for urban sewer system rehabilitation.

키워드

참고문헌

  1. 구리시 (2001). 구리시 하수도정비 기본계획보고서
  2. 구리시 (2002). 한강수계 하수관거정비 시범사업 타당성조사보고서
  3. 서울특별시 (1998). 하수관거조사 및 정비 기본설계보고서(불광배수구역)
  4. 이정호, 김중훈, 김형수, 김응석, 조덕준 (2004). '최적 도시유출시스템의 개발 : I. 도시유출시스템에서의 AHP를 고려한 불명수량 산정에 대한 연구.' 한국수자원학회논문집, 한국수자원학회, 제 37권, 제3호, pp. 195-206
  5. 이정호, 김중훈, 김형수, 조덕준, 김응석 (2004). '최적도시유출시스템의 개발 : II. 도시유역의 최적 유출시스템 제어를 위한 의사결정모형의 개발.' 한국수자원학회논문집, 한국수자원학회, 제 7권, 제3호, pp. 207-217
  6. Abraham, D.M., Gillani, S.A. (1999).'Innovations in Material for Sewer System Rehabilitation.' Trenchless Technology Research, Vol 14, No. 1, pp. 43-56 https://doi.org/10.1016/S0886-7798(99)00003-6
  7. Brousseau, E (1997). 'Trenchless Sewer Rehabilitation vs. Reconstruction. DM Robichaud Associates' Ltd. http://www. dmrobichaud.com/rehabchoices.htm
  8. Belhadj, N., Joannis, C. and Raimbault, G. (1995). 'Modelling of Rainfall Induced Infiltration into Separate Sewerage.' Water Science and Technology, Vol. 32, No. 1. pp. 161-168 https://doi.org/10.1016/0273-1223(95)00551-W
  9. Chae, M.J. and Abraham, D.M. (2001) 'Neuro-Fuzzy Approaches for Sanitary Sewer Pipeline Condition Assessment.' Journal of Computing in Civil Engineering, Vol. 15, No. 1, pp. 4-14 https://doi.org/10.1061/(ASCE)0887-3801(2001)15:1(4)
  10. deMonsabert, S. and Thornton, P. (1997) 'A benders decomposition model for sewer rehabilitation planning for infiltration and inflow planning.' Water Environment Research, Vol. 69, No. 2, pp. 162-167 https://doi.org/10.2175/106143097X125317
  11. deMonsabert, S., Ong, C. and Thornton, P. (1999). 'An integer programming for optimizing sanitary sewer rehabilitation over a planning horizon.' Water Environment Research, Vol. 74, No. 7, pp. 1292-1297 https://doi.org/10.2175/106143096X122429
  12. Fenner, R.A. and Sweeting, L. (1999). 'A Decision Support Model for the Rehabilitation of Non-Critical Sewer.' Water Science Tech- nology, Vol. 39, No. 9, pp. 193-200 https://doi.org/10.1016/S0273-1223(99)00233-4
  13. Goldberg, D.E. (1990). 'Genetic Algorithms in Search, Optimization and Machine Learning.' Addison-Wesley, Reading,MA
  14. Holland, J.H. (1975). 'Adaptation in Natural and Artificial Systems.' Univ. MI Press
  15. Hoffman, M. (2000). 'New Developments in Pipeline Rehabilitation Technology.' Environ- mental and Pipeline Engineering 2000, pp. 348-357
  16. Lin, Z.C. and Yang, C.B. (1996). 'Evaluation of machine selection by the AHP method.' Journal of materials Processing Technology, Vol. 57, No. 3, pp. 253-258 https://doi.org/10.1016/0924-0136(95)02076-4
  17. Moselhi, O. and Tariq, S.E. (2000). 'Classification of Defects in Sewer Pipes using Neural Networks.' Journal of Infrastructure System, Vol. 6, No. 3, pp. 97-104 https://doi.org/10.1061/(ASCE)1076-0342(2000)6:3(97)
  18. Reyna, S.M., Vanegas, J.A. and Khan, A.H. (1994). 'Construction Technologies for Sewer Rehabilitation.' Journal of Construction Engineering and management, Vol. 120, No. 3, pp. 467-487 https://doi.org/10.1061/(ASCE)0733-9364(1994)120:3(467)
  19. Thomas, L.S. (1990). 'How to make a decision : The Analytic Hierarchy Process.' European Journal of Operational Research, Vol. 48, No. 1, pp. 9-16 https://doi.org/10.1016/0377-2217(90)90057-I
  20. Thomas, L.S. (1994). 'Highlights and critical points in the theory and application of the analytical hierarchy process.' European Journal of Operational Research, Vol. 74, No. 3, pp. 426-447 https://doi.org/10.1016/0377-2217(94)90222-4
  21. Vargas, L.G. (1990). 'An overview of the analytic hierarchy process and its applications.' European Journal of Operational Research, Vol. 48, No. 1, pp. 2-8 https://doi.org/10.1016/0377-2217(90)90056-H
  22. Wirahadikusumah, R., Abraham, D.M., Iseley, T. and Prasanth, R.K. (1998). 'Assessment Technologies for Sewer System Rehabilitation.' Automation in Construction, Vol. 7, No. 4, pp. 259-270 https://doi.org/10.1016/S0926-5805(97)00071-X