References
-
송문섭, 박창순, 이정진 (2003).
, 자유아카데미 - Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178
- Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution, Journal of the Royal Statistical Society, Series B, 61, 579-602 https://doi.org/10.1111/1467-9868.00194
- Barton, D. E. and Mallows, C L. (1965). Some aspects of the random sequence, Annals of Mathematical Statistics, 36, 236-260 https://doi.org/10.1214/aoms/1177700286
- Buccianti, A. (2005). Meaning of the .A parameter of skew-normal and log-skew normal distributions in fluid geochemistry, CODAWORK'05, 19-21
- Chang, F. C, Gupta, A. K. and Huang, W. J. (2002). Some skew-symmetric models, Random Operators and Stochastic Equations, 10, 133-140 https://doi.org/10.1515/rose.2002.10.2.133
- Chiogna, M. (1998). Some results on the scalar skew-normal distribution, Journal of the Italian Statistical Society, 7, 1-13 https://doi.org/10.1007/BF03178918
- Daniel, W. W. (1990). Applied Nonparametric Statistics, 2nd ed., PWS-KENT, Boston
- Darling, D. A. (1957). The Kolmogorov-Smirnov, Cramer-von mises tests, Annals of Mathematical Statistics, 28, 823-838 https://doi.org/10.1214/aoms/1177706788
- Genton, M. G. (2005). Discussion of the skew-normal, Scandinavia Journal of Statistics, 32, 189-198 https://doi.org/10.1111/j.1467-9469.2005.00427.x
- Gupta, A. K. and Chen, T. (2001). Goodness-of-fit test for the skew-normal distribution, Communications in Statistics-Simulation and Computation, 30, 907-930 https://doi.org/10.1081/SAC-100107788
- Gupta, A. K., Nguyen, T. and Sanqui, J. A. T. (2004). Characterization of the skew-normal distribution, Annals of the Institute of Statistical Mathematics, 56, 351-360 https://doi.org/10.1007/BF02530549
- Hajek, J., Sidak, Z. and Sen, P. K. (1998). Theory of Rank Tests, 2nd ed., Academic Press, New York
- Henze, N. (1986). A probabilistic representation of the skew-normal distribution, Scandinavian Journal of Statistics, 13, 271-275
- Joseph, M. P. (2005). A PD validation framework for Basel II internal rating-based systems, Credit Scoring and Credit Control, IX
- Liseo, B. (1990). The skew-normal class of densities: Inferential aspects from a Bayesian viewpoint, Statistica, 50, 71-82
- Salvan, A. (1986). Locally most powerful invariant tests of normality, Atti Della XXXIII Riunione Sci entifica Della Societa Italiana di Statistica, 2, 173-179
- Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples, Bulletin of Mathematical University of Moscow, 2, 3-16
- Tasche, D. (2006). Validation of internal rating systems and PD estimates, Working paper, http://arxiv.org/ physics/0606071v1
Cited by
- Developing the high risk group predictive model for student direct loan default using data mining vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1417