DOI QR코드

DOI QR Code

앵커 하중전이에 따른 사면의 안전율 비교 연구

Comparison of Safety factor for an Anchored Slope in Accordance with the Effects of Load Transfer

  • 김성규 (성균관대학교 건설환경시스템공학과) ;
  • 김낙경 (성균관대학교 건설환경시스템공학과) ;
  • 박종식 (한화건설 기술연구소 토목연구팀) ;
  • 주용선 (성균관대학교 건설환경시스템공학과) ;
  • 김태훈 ((주)대우건설기술연구소)
  • Kim, Sung-Kyu (Dept. of Civil, Architectural & Environmental, System Eng., Sungkyunkwan Univ.) ;
  • Kim, Wak-Kyung (Dept. of Civil, Architectural & Environmental, System Eng., Sungkyunkwan Univ.) ;
  • Park, Jong-Sik (Hanwha Institute of Construction Technology, Hanwha E&C Co, Ltd.) ;
  • Joo, Yong-Sun (Dept. of Civil, Architectural & Environmental, System Eng., Sungkyunkwan Univ.) ;
  • Kim, Tae-Hoon (Daewoo Institute of Construction Technology, Daewoo E&C Co. Ltd.)
  • 발행 : 2008.11.30

초록

본 논문에서는 앵커로 보강된 사면에 대한 안정해석시 앵커의 하중전이 메커니즘이 사면의 전체 안전율에 어떻게 영향을 미치는지를 알아보았다. 사면안정해석 방법에는 한계평형해석범, 유한요소해석법 및 스프레드시트를 이용하는 방법이 있으며 각각의 방법을 통해 안전율을 산정하여 서로 비교하였다. 앵커로 보강된 사면의 안정해석을 위해 가장 널리 사용되고 있는 방법은 한계평형해석 법으로 사용이 간편하다는 특징을 가지고 있다. 그러나 한계평형해석방법에서는 사면의 파괴면이 정착장을 통과하거나 정착장 바깥쪽을 지날 때에는 사면의 전체 안전율에 아무런 영향을 주지 못 하기 때문에 실제보다 보수적인 설계가 이루어질 수 있다. 따라서 본 논문에서는 각각의 해석방법을 이용하여 앵커로 보강된 사면의 안정해석을 수행하고 안전율을 비교하였다.

This paper presents how the load transfer mechanism of the ground anchor affects on the stability analysis of anchored slope. The finite element analysis and the conventional limit equilibrium analysis on the anchored slope were performed and compared. The limit equilibrium analysis of the anchored slope is widely used in design practice due to the easiness of the analysis. However, the load transfer mechanism is not considered properly for the analysis. When the failure surface passes through the bonded length of an anchor, the anchor load is disregarded and the factor of safety for the anchored slope is smaller than it should be. In this study, the load transfer distribution was incorporated into the limit equilibrium stability analysis of the anchored slope and the results were compared with those of finite element analysis.

키워드

참고문헌

  1. AASHTO (1990), "Permanent ground anchor specification In-situ soil improvement technique", AASHTO-AGC-ARTBA TF27 Rep., AASHTO, Washington, D.C
  2. ABAQUS, Version 6.4, Hibbit, Karlson & Sorensen Inc., Pawtucket, R.I., 2004.
  3. Briaud, J.L., Lim, Y. (1999), "Tieback walls in sand: numerical simulation and design implications", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, No.2, pp.101-110 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(101)
  4. BSI (1989), "British standard code of practice for ground anchors", London, England
  5. Davis, E.H. (1968), "Theories of plasticity and the failure of soil masses", In: Lee, I. K., editor, Soil mechanics: selected topics, London UK : Butterworth, pp.341-380
  6. Duncan, J.M. (1996), "State of the art: limit equilibrium and finite-element analysis of slopes", J. Geotech. Engng, ASCE, Vol.122, No.7, pp.577-596 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
  7. Duncan, J.M. and Dunlop, P. (1969), "Slopes in stiff fissured clays and soils", J. Soil Mech. Found. Div., ASCE, Vol.95, SM5, pp.467-492
  8. Fredlund, D.G. and Krahn, J. (1977), "Comparison of slope stability ethod of analysis", Canadian Geotechnical Journal, Vol.13, No.3, pp.429-439
  9. Fredlund, D.G., Krahn, J. and Pufahl, D.E. (1981), "The methods", Proceedings of Tenth International Conference on Soil Mechanics and Foundations Engineering, Stockholm, Sweden, 3, pp.409-416
  10. Griffiths, D.V. (1985), "Numerical modeling of interfaces using conventional finite element", In: Proc. 5th Int. Conf. Num. Meth. Geomech., Nagoya, pp.837-844
  11. Griffiths, D.V. and Lane. P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, Vol.49, No.3, pp.387-403 https://doi.org/10.1680/geot.1999.49.3.387
  12. Kim, N.K. (2003), "Performance of tension and compression anchors in weathered soil", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.129, No.2, pp.1138-1150 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1138)
  13. Kondner, R.L. (1963), "Hyperbolic stress-strain response: cohesive soils", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, SM1, pp.115-143
  14. Matsui, T. and San, K.C. (1992), "Finite element slope stability analysis by shear strength reduction technique", Soils Found. Vol.32, No.1, pp.59-70 https://doi.org/10.3208/sandf1972.32.59
  15. Ostermayer, H. and Sheele, F. (1977), "Research on Ground Anchors in Non Cohesive Soils", Sepcial session 4, IXth ICSMFE, Tokyo
  16. PCSTABL5 Manual, Federal Highway Administration U.S. Department of Transportation
  17. Snitbhan, N. and Chen, W. F. (1976), "Elastic-plastic large deformation analysis of soil slopes", Comput. Struct. 9, 567-577 https://doi.org/10.1016/0045-7949(78)90006-8
  18. Tenier, P. and Molier, P. (1982), "Influence of Concentrated Loads on Slope Stability", Canadian Geotechnical Journal, Vol.19, pp. 396-400, Feb https://doi.org/10.1139/t82-044
  19. Weerasinghe, R.B. and Littlejohn, G.S. (1977), "Load transfer and failure of anchorages in weak mudstone", In: Proc., Conference on Ground Anchorages and Anchored Structures, Institution of Civil Engineers, London
  20. Zienkiewicz, O.C. and Taylor, R.L., 1989, "The finite element method", Vol.1, 4th edn. London, New York: McGraw-Hill