Silicon purification through acid leaching and unidirectional solidification

산처리와 일방향 응고를 이용한 실리콘 정제

  • Published : 2008.12.31

Abstract

Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.

최근 실리콘 원료의 부족에 따른 가격상승으로 인하여 99.9999% 이상의 순도를 지닌 폴리 실리콘을 더 저렴하게 제조하기 위한 연구가 활발히 진행되고 있다. 본 연구에서는 순도 99%의 금속급 실리콘(MG-Si)을 원료로 산처리와 일방향 응고를 통해 고순도로 정제하는 연구를 수행하였다. MG-Si 럼프를 플레너터리 밀로 분쇄한 후 HCl/$HNO_3$/HF 산 수용액에서 처리하였다. 그 결과 Al, Fe, Ca, Mn 등과 같은 금속 불순물들의 실리콘 내 함량이 크게 감소하면서 실리콘의 순도는 99.995%까지 향상되었다. 정제된 실리콘 분말을 성형한 후 HEM로를 이용하여 용융시킨 뒤, 일방향 응고를 통하여 잉곳을 제조하였다. 성장시킨 다결정 실리콘 잉곳은 $0.3{\Omega}{\cdot}cm$의 비저항과 $3.8{\mu}{\cdot}sec$의 열 운반자 소멸시간(minority carrier life time)을 나타내었다.

Keywords

References

  1. P. Woditsch and W. Koch, "Solar grade silicon feed- stock supply for PV industry", Sol. En. Mater. Sol. Cells. 72 (2002) 11 https://doi.org/10.1016/S0927-0248(01)00146-5
  2. A.D. Little, "16th European Photovoltaic Solar Energy Conference", B. McNelis, W. Palz, H.A. Ossenbrink and P. Helm, Eds., Vol. 1 (James & James, London, 2000) p. 9
  3. D. Sarti and R. Einhaus, "Silicon feedstock for the multi-crystalline photovoltaic industry", Sol. En. Mater. Sol. Cells. 72 (2002) 27 https://doi.org/10.1016/S0927-0248(01)00147-7
  4. A. Muller, M. Ghosh and P. Woditsch, "Silicon for photovoltaic applications", Mater. Eng. B 134 (2006) 257 https://doi.org/10.1016/j.mseb.2006.06.054
  5. I.C. Santos and M. H. Afonso, "Purification of metallurgical grade silicon by acid leaching", Hydrometallurgy 23 (1990) 237 https://doi.org/10.1016/0304-386X(90)90007-O
  6. K. Morita and T. Miki, "Thermodynamics of solargrade- silicon refining", Intermetallics 11 (2003) 1111 https://doi.org/10.1016/S0966-9795(03)00148-1
  7. J.M. Kim and Y.K. Kim, "Growth and characterization of 240kg multicrystalline silicon ingot grown by directional solidification", Sol. Energy Mater. Sol. Cells. 81 (2004) 217 https://doi.org/10.1016/j.solmat.2003.11.020
  8. F.A Trumbore, "Solid solubilities of impurity elements in germanium and silicon", Bell Syst. Tech. J. 39 (1960) 205 https://doi.org/10.1002/j.1538-7305.1960.tb03928.x