Production and characterization of cross-reactive anti-Porphyromonas gingivalis heat shock protein 60 monoclonal antibody

항-Porphyromonas gingivalis heat shock protein 60 단클론항체의 생성과 특성 규명

  • Lee, Ji-Young (Department of Periodontology, School of Dentistry, Pusan National University) ;
  • Lee, Ju-Youn (Department of Periodontology, School of Dentistry, Pusan National University) ;
  • Kim, Seong-Jo (Department of Periodontology, School of Dentistry, Pusan National University) ;
  • Choi, Jeom-Il (Department of Periodontology, School of Dentistry, Pusan National University)
  • 이지영 (부산대학교 치의학전문대학원 치주과학교실) ;
  • 이주연 (부산대학교 치의학전문대학원 치주과학교실) ;
  • 김성조 (부산대학교 치의학전문대학원 치주과학교실) ;
  • 최점일 (부산대학교 치의학전문대학원 치주과학교실)
  • Published : 2008.12.31

Abstract

Purpose: Porphyromonas gingivalis(P. gingivalis) heat shock protein (HSP)60 may play a role in the immunopathogenesis of periodontitis as well as atherosclerosis by modulating autoimmune reaction due to its high level of sequence homology between bacteria and human counterpart. The purpose of this study was to identify immunodomiant epitope of P. gingivalis HSP60 that is reactive exclusively to the homologous bacteria without reacting with human HSP. Materials and methods: The present study was performed to identify the peptide specifically recognized by anti-P. gingivalis HSP60 monoclonal antibodies mono-reactive to P. gingivalis HSP60. Results: Four different hybridomas were cloned producing monoclonal IgG antibodies exclusively to P. gingivalis HSP60. Thirty seven synthetic peptides (20-mer with 5-amino acid overlapping) were synthesized. All of these peptide were subject to SDS-PAGE for immunblot analysis. One peptide (TVPGGGTTYIRAIAALEGLK) and the other peptide (TLVVNRLRGSLKICAVKAPG) were recognized by all and one of the four monoclonal antibodies, respectively, that reacted solely with P. gingivalis HSP60. Immunohistochemistry to identify the localization of the HSP60 in the diseased gingival tissues revealed that all of the four monoclonal antibodies were highly reacted with the diseased gingival tissue than normal gingival tissue. Conclusion: The P. gingivalis HSP60 peptides (TVPGGGTTYIRAIAALEGLK and TLVVNRLRGSLKICAVKAPG, respectively) are positively involved in the immunopathologic process of periodontal disease. The peptide may potentially be developed as vaccine candidates. Further investigations are under way to identify more clones producing monoclonal antibodies reactive to P. gingivalis HSP and to other periodontopathogenic bacteria as well, while maintaining specificities to human counterpart.

Keywords

References

  1. Klausen B. Microbiological and immunological aspects of experimental periodontal disease in rats: a review article. J Periodontol 1991;62:59-73 https://doi.org/10.1902/jop.1991.62.1.59
  2. Choi JI, Schifferle RE, Yoshimura F, Kim BW. Capsular polysaccharide- fimbrial protein conjugate vaccine protects against Porphyromonas gingivalis infection in SCID mice reconstituted with human peripheral blood lymphocytes. Infect Immun 1998;66:391-393
  3. Taubman MA, Yoshie H, Wetherell JR, Ebersole JL, Smith DJ. Immune response and periodontal bone loss in germ free rats immunized with and infected with Actinobacillus actinomycetemcomitans. J Periodontal Res 1983;18:393-401 https://doi.org/10.1111/j.1600-0765.1983.tb00375.x
  4. Genco CA, Kapczynski DR, Cutler CW, Arko RJ, Arnold RR. Influence of immunization on Porphyromonas gingivalis colonization and invasion in the mouse chamber model. Infect Immun 1992;60:1447-1454
  5. Rajapakse PS. Obrien-Simpson NM, Slakeski N, Hoffman B, Reynolds EC. Immunization with the RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis protects against bone loss in the rat periodontitis model. Infect Immun 2002;70:2480-2486 https://doi.org/10.1128/IAI.70.5.2480-2486.2002
  6. Podmore M, Ebersole JL, Kinane DF. Immunodominant antigens in periodontal disease: a real or illusive concept? Crit Rev Oral Biol Med 2001;12:179-185 https://doi.org/10.1177/10454411010120020701
  7. Page RC. The humoral response in patients with periodontitis: Effects of treatment and prospects for a vaccine. Compend Conti Educ Dent Suppl 1994;18:666-671
  8. Dzink JL, Socransky SS, Haffajee AD. The predominant cultivable microbiota of active and inactive lesions of destructive periodontal disease. J Clin Periodontol 1998;15: 316-323
  9. Shinnick TM. Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 1991;167:145-160
  10. Hinode D, Nakamura R, Grenier D, Mayrand D. Cross-reactivity of specific antibodies directed to heat shock proteins from periodontopathogenic bacteria and of human origin. Oral Microbiol Immunol 1998;13:55-58 https://doi.org/10.1111/j.1399-302X.1998.tb00752.x
  11. Maeda H, Miyamoto M, Hongyo H, Nagai A, Kurihara H, Murayama Y. Heat shock protein 60(GroEL) from Porphyromonas gingivalis: molecular cloning and sequence analysis of its gene and purification of recombinant protein. FEMS Microbiol Lett 1994;119:129-135 https://doi.org/10.1111/j.1574-6968.1994.tb06879.x
  12. Minami J, Matsumoto S, Yamada T. Putative heat shock protein 70 gene from Actinobacillus actinomycetemcomitans: molecular cloning and sequence analysis of its gene. Oral Microbiol Immunol 1998;13:113-119 https://doi.org/10.1111/j.1399-302X.1998.tb00721.x
  13. Tsai JP, Shi W. Analysis of gene expression in Treponema denticola with differential display polymerase chain reaction. Oral Microbiol Immunol 2000;15:305-308 https://doi.org/10.1034/j.1399-302x.2000.150506.x
  14. Skar CK, Bakken V. The heat shock response of Fusobacterium nucleatum. Eur J Oral Sci 2001;109:402-408 https://doi.org/10.1034/j.1600-0722.2001.00107.x
  15. Hinode D, Yoshioka M, Tanabe S, Miki O, Masuda K, Nakamura R. The GroEL-like protein from Campylobacter rectus: immunological characterization and interleukin-6 and -8 induction in human gingival fibroblast. FEMS Microbiol Lett 1998;167:1-6 https://doi.org/10.1111/j.1574-6968.1998.tb13199.x
  16. Kadri R, Devine D, Ashraf W. Purification and functional analysis of the DnaK homologue from Prevotella intermedia OMZ 326. FEMS Microbiol Lett 1998;167:63-68 https://doi.org/10.1111/j.1574-6968.1998.tb13208.x
  17. Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. Periodontol 2000 1999;20: 168-238 https://doi.org/10.1111/j.1600-0757.1999.tb00162.x
  18. Choi JI, Chung SW, Kang HS, Rhim BY, Kim SJ, Kim SJ. Establishment of Porphyromonas gingivalis heat shock protein-specific T-cell lines from atherosclerosis patients. J Dent Res 2002;81(5):344-348 https://doi.org/10.1177/154405910208100511
  19. Choi JI, Kang HS, Park YM, Kim SJ, Kim US. Identification of T-cell epitopes of Porphyromonas gingivalis heat-shock-protein 60 in periodontitis. Oral Microbiol Immunol 2004;19:1-5 https://doi.org/10.1046/j.0902-0055.2002.00087.x
  20. Choi JI, Choi KS, Yi NN, Kim US, Choi JS, Kim SJ. Recognition and phagocytosis of multiple periodontopathogenic bacteria by anti-Porphromonas gingivalis heat-shock protein 60 antisera. Oral Microbiol Immunol 2005;20:51-55 https://doi.org/10.1111/j.1399-302X.2005.00182.x
  21. Ishihara K, Ando T, Kosugi M, Morimoto M, Yamane G, Takahashi S, Ogiuchi H, Okuda K. Relationships between the onset of pustulosis palmaris et plantaris, periodontitis and bacterial heat shock proteins. Oral Microbiol Immunol 2000;15:232-237 https://doi.org/10.1034/j.1399-302x.2000.150404.x
  22. Ando T, Kato T, Ishihara K, Ogiuchi H, Okuda K. Heat shock proteins in the human periodontal disease process. Microbiol Immunol 1995;39:321-327 https://doi.org/10.1111/j.1348-0421.1995.tb02208.x
  23. Lopartin DE, Shelburne CE, Van Poperin N, Kowalski CJ, Bagramian RA. Humoral immunity to stress proteins and periodontal disease. J Periodontol 1999;70:1185-1193 https://doi.org/10.1902/jop.1999.70.10.1185
  24. Choi JI, Chung SW, Kang HS, Rhim BY, Park YM, Kim US, Kim SJ . Epitope mapping of Porphyromonas gingivalis heat-shock protein and human heat-shock protein in human atherosclerosis. J Dent Res 2004;83(12):936-940 https://doi.org/10.1177/154405910408301209
  25. Yamazaki K, Ohsawa Y, Tabeta K, Ito H, Ueki K, Oda T, Yoshie H, Seymour GJ. Accumulation of human heat shock protein 60-reactive T cell in the gingival tissues of periodontitis patients. Infect Immun 2002;70:2492-2501 https://doi.org/10.1128/IAI.70.5.2492-2501.2002
  26. Hansson GK. Immune mechanism in atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:1876-1890 https://doi.org/10.1161/hq1201.100220
  27. Ueki K, Tabeta K, Yoshie H, Yamazaki K. Self-heat shock protein 60 induces tumour necrosis factor-alpha in monocyte-derived macrophage : possible role in chronic inflammatory periodontal disease. Clin Exp Immunol 2002;127: 72-77 https://doi.org/10.1046/j.1365-2249.2002.01723.x
  28. Wick G, Perschinka H, Millonig G. Atherosclerosis as an autoimmune disease: an update. Trends Immunol 2001;22: 665-669 https://doi.org/10.1016/S1471-4906(01)02089-0
  29. Lee NN, Lee JY, Kim SJ, Choi JI. Development of monoclonal antibody against Porphyromonas gingivalis heat shock protein. J Korean Acad Periodontol 2007;37:11-21 https://doi.org/10.5051/jkape.2007.37.1.11
  30. Maeda H, Miyamoto M, Kokeguchi S, Kono T, Nishimura F, Takashiba S, &Murayama Y. Epitope mapping of heat shock protein 60(GroEL) from Porphylomonas gingivalis. FEMS Immunol Med Microbiol 2000;28:219-224 https://doi.org/10.1111/j.1574-695X.2000.tb01480.x
  31. Jindal S, Dudani AK, Singh B, Harley CB, & Gupta RS. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilo Dalton mycobacterial antigen. Mol Cell Biol 1989;9:2279-2283 https://doi.org/10.1128/MCB.9.5.2279
  32. Lamb JR, Bal V, Mendez-samperio P, Mehlert A, So A, Rothbard J, Jindal S, Young RA, & Young DB. Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol 1989;1:191-196 https://doi.org/10.1093/intimm/1.2.191