Isolation of Alcohol-tolerant Amylolytic Saccharomyces cerevisiae and Its Application to Alcohol Fermentation

  • Published : 2008.12.31

Abstract

An novel amylolytic yeast, Saccharomyces cerevisiae HA 27, isolated from nuruk, displayed resistance against high sugar (50% glucose) and alcohol (15%). Maximal production of amylolytic enzyme by S. cerevisiae HA 27 was achieved on 9 days of cultivation at the optimal temperature $20^{\circ}C$ and pH 6.0. The activity of amylolytic enzyme produced by S. cerevisiae HA 27 was stable, even at $70^{\circ}C$, and over a broad pH range (4.0-11.0). Also, the amylolytic enzyme of S. cerevisiae HA 27 showed optimal activity in pH 5.0 at $50^{\circ}C$. S. cerevisiae HA 27 exhibited 6.2%(v/v) alcohol fermentation ability using starch as a carbon source.

Keywords

References

  1. Park S-Y, Kim M-S, Kim K. Direct ethanol production from starch substrate by polyploid recombinant yeast secreting both ${\alpha}-amylase$ and glucoamylase. Korean J. Appl. Microbiol. Biotechnol. 24: 604-612 (1996)
  2. Park W-S, Koo Y-J, Shin D-H, Suh K-B. Isolation and identification of starch utilizing yeast. Korean J. Food Sci. Technol. 15: 46-50 (1983)
  3. Park W-S, Koo Y-J, Shin D-H, Min B-Y. Study on the pattern of starch assimilation by Sporobolomyces holsaticus. Korean J. Food Sci. Technol. 15: 177-182 (1983)
  4. Ha D-M, Kim D-C, Hong S-M, Lee C-W. Identification and properties of starch utilizing yeasts isolated from nuruk. J. Korean Soc. Appl. Biol. Chem. 32: 408-415 (1989)
  5. Koo Y-J, Park W-S, Shin D-H, Yu T-J. Isolation and identification of the amylolytic yeast Hansenula and its Haploid mutant. Koreran J. Microbiol. Biotechnol. 13: 129-135 (1985)
  6. Seu J-H, Kim Y-H, Jun D-Y, Lee J-T. A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast. (Part1) Isolation and characterization of fusant between S. cecevisiae and S. diastaticus. Korean J. Microbiol. Biotechnol. 14: 305-310 (1986)
  7. Kim T-G, Kim K. The construction of starch-fermenting yeast using genetic engineering and rare-mating. Appl. Biochem. Biotech. 59: 39-51 (1996) https://doi.org/10.1007/BF02787856
  8. Seu J-H, Kwon T-K, Hong S-D. A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast. (Part3) Isolation and characterization of fusant between S. diastaticus and C. tropicalis. Korean J. Microbiol. Biotechnol. 14: 359-363 (1986)
  9. Ronald M. Microbiological Media. CRC Press, NW, USA. p. 1624 (1993)
  10. Yu H-E, Lee D-H, Lee J-H, Choi S-Y, Lee J-S. Quality characteristics and cardiovascular activities of Korean traditional wines and liquors. Food Sci. Biotechnol. 14: 772-777 (2005)
  11. Seo D-H, Jung J-H, Kim H-Y, Kim Y-R, Ha S-J, Kim Y-C, Park C-S. Identification of lactic acid bacteria involved in traditional Korean rice wine fermentation. Food Sci. Biotechnol. 16: 994-998 (2007)
  12. Park S-Y, Choi S-Y, Min J-H. Isolation of glucoamyalse producing yeasts and its enzymatic characteristics. Korean J. Mycol. 27: 386-393 (1999)
  13. NTSI. Analysis, Assessment, and Research of Alcoholic Beverages and Brewing Raw Materials. National Tax Service Institute, Seoul, Korea. pp. 12-63 (1979)
  14. Kim Y-H, Seu J-H. Culture conditions for glucoamylase production and ethanol productivity of heterologous transformant of Saccharomyces cerevisiae by glucoamylase gene of Saccharomyces diastaticus. Korean J. Microbiol. Biotechnol. 16: 494-498 (1988)
  15. Park W-S, Koo Y-J, Shin D-H, Min B-Y. Study on the cultural conditions of starch utilizing yeast Sporobolomyces holsaticus. Korean J. Food Sci. Technol. 15: 51-55 (1993)
  16. Asgher M, Asad MJ, Rahman SU, Legge RL. A thermostable ${\alpha}-amylase$ from a moderately thermophilic Bacillus subtilis strain for starch processing. J. Food Eng. 79: 950-955 (2007) https://doi.org/10.1016/j.jfoodeng.2005.12.053
  17. Abarca D, Lobato MF, Claros MG, Jimenez A. Isolation and expression in Saccharomyces cerevisiae of a gene encoding an ${\alpha}-amylase$ from Schwaniomyces castellii. FEBS Lett. 255: 455-459 (2005)
  18. Peres MFS, Souza CS, Thomaz D, Souza AR, Cecilia L. Partitioning of the glucoamylase activity at the cell surfaces in cultures of Saccharomyces. Process Biochem. 41: 20-27 (2006) https://doi.org/10.1016/j.procbio.2005.01.027
  19. Han Y-J, Yu T-S. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Asepergillus corenus NR 15-1. J. Microbiol. Biotechn. 15: 239-246 (2005)
  20. Choi S-H, Sung C, Oh M-J, Kim C-J. Intergenic protoplast fusion in Saccharomycopsis fibuligera and Saccharomyces cerevisiae. J. Ferment. Bioeng. 84: 158-161 (1997) https://doi.org/10.1016/S0922-338X(97)82547-0
  21. Seo J-H, Kim Y-H, Hong S-D, Kwon T-K. A study on strain improvement by protoplast fusion between amylase secreting yeast and alcohol fermenting yeast. (Part4) Alcohol and pullulanase productivities of fusant between S. diastaticus and C. tropicalis. Korean J. Microbiol. Biotechnol. 14: 365-369 (1986)
  22. Kim K, Lee J-H. Construction of a transformed yeast strains secreating both ${\alpha}-amylase$ and glucoamylase for direct starch-fermentation. J. Microbiol. Biotechn. 4: 7-12 (1994)
  23. Murai T, Yoshino T, Ueda M, Haranoya I, Ashikari T, Yoshizumi H, Tanaka A. Evaluation of the function of arming yeast displaying glucoamylase on its cell surface by direct fermentation of corn to ethanol. J. Ferment. Bioeng. 86: 569-572 (1998) https://doi.org/10.1016/S0922-338X(99)80008-7