DOI QR코드

DOI QR Code

Electronic Structures, Magnetic, and Superconducting Properties of bcc Ni and V-doped Ni (Ni16-xVx)

  • Kim, Bong-Jae (PCTP, Department of Physics, Pohang University of Science and Technology) ;
  • Choi, Hong-Chul (PCTP, Department of Physics, Pohang University of Science and Technology) ;
  • Kim, Kyoo (PCTP, Department of Physics, Pohang University of Science and Technology) ;
  • Min, B.I. (PCTP, Department of Physics, Pohang University of Science and Technology)
  • Published : 2008.12.31

Abstract

We have investigated the electronic structures and magnetic properties of both undoped and doped bcc Ni using the full-potential linearized augmented plane wave (FLAPW) band method. A ferromagnetic ground state is obtained at the equilibrium volume of bcc Ni. When the system is under strain, the nonmagnetic ground state is stabilized. When the Ni is doped with V, the $Ni_{16-x}V_x$ material loses its magnetic properties when x > 2. We have also discussed the possible superconducting properties of $Ni_{16-x}V_x$.

Keywords

References

  1. V. L. Moruzzi, Phys. Rev. Lett. 57, 2211 (1986) https://doi.org/10.1103/PhysRevLett.57.2211
  2. V. L. Moruzzi, P. M. Marcus, and J. Kubler, Phys. Rev. B 34, 1784 (1986) https://doi.org/10.1103/PhysRevB.34.1784
  3. B. I. Min, T. Oguchi and A. J. Freeman, Phys. Rev. B 33, 7852 (1986) https://doi.org/10.1103/PhysRevB.33.7852
  4. J. I. Lee, Soon C. Hong, and A. J. Freeman, Phys. Rev. B 47, 810 (1993) https://doi.org/10.1103/PhysRevB.47.810
  5. D. Qian, X. F. Jin, J. Barthel, M. Klaua, and J. Kirschner, Phys. Rev. Lett. 87, 227204 (2001) https://doi.org/10.1103/PhysRevLett.87.227204
  6. J. A. C. Bland, R. D. Bateson, A. D. Johnson, B. Heinrich, Z. Celinski and H. J. Hauter, J. Magn. Magn. Mater. 93, 331 (1991) https://doi.org/10.1016/0304-8853(91)90356-F
  7. N. B. Brookes, A. Clarke, and P. D. Johnson, Phys. Rev. B 46, 237 (1992) https://doi.org/10.1103/PhysRevB.46.237
  8. C. S. Tian, D. Qian, D. Wu, R. H. He, Y. Z. Wu, W. X. Tang, L. F. Yin, Y. S. Shi, G. S. Dong, X. F. Jin, X. M. Jiang, F. Q. Liu, H. J. Qian, K. Sun, L. M. Wang, G. Rossi, Z. Q. Qiu, and J. Shi, Phys. Rev. Lett. 94, 137210 (2005) https://doi.org/10.1103/PhysRevLett.94.137210
  9. G. Y. Guo, and H. H. Wang, Chin. J. Phys. (Taipei) 38, 949 (2000)
  10. S. Khmelevskyi and P. Mohn, Phys. Rev. B 75, 012411 (2007) https://doi.org/10.1103/PhysRevB.75.012411
  11. P. Yu, X. F. Jin, J. Kudrnovsky, D. S. Wang, and P. Bruno, Phys. Rev. B 77, 054431 (2008) https://doi.org/10.1103/PhysRevB.77.054431
  12. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  13. H. J. F. Jansen and A. J. Freeman Phys. Rev. B. 30, 561 (1984) https://doi.org/10.1103/PhysRevB.30.561
  14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  15. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Thomson Learning (1976)
  16. W. L. McMillan, Phys. Rev. 167, 331 (1968) https://doi.org/10.1103/PhysRev.167.331
  17. G. D. Gaspari and B. L. Gyorffy, Phys. Rev. Lett. 28, 801 (1972) https://doi.org/10.1103/PhysRevLett.28.801