DOI QR코드

DOI QR Code

A First-principles Study on Magnetic and Electronic Properties of Ni Impurity in bcc Fe

  • Rahman, Gul (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Kim, In-Gee (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology)
  • Published : 2008.12.31

Abstract

The magnetic and electronic properties of Ni impurity in bcc Fe ($Ni_1Fe_{26}$) are investigated using the full potential linearized augmented plane wave (FLAPW) method based the generalized gradient approximation (GGA). We found that the Ni impurity in bcc Fe increases both the lattice constant and the magnetic moment of bcc Fe. The calculated equilibrium lattice constant of $Ni_1Fe_{26}$ in the ferromagnetic state was 2.84 A, which is slightly larger than that of bcc Fe (2.83 ${\AA}$). The averaged magnetic moment per atom of $Ni_1Fe_{26}$ unit cell was calculated to be $2.24{\mu}_B$, which is greater than that of bcc Fe (2.17 ${\mu}_B$). The enhancement of magnetic moment of $Ni_1Fe_{26}$ is mainly contributed by the nearest neighbor Fe atom of Ni, i.e., Fe1, and this can be explained by the spin flip of Fe1 d states. The density of states shows that Ni impurity forms a virtual bound state (VBS), which is contributed by Ni $e_{g{\downarrow}}$ states. We suggest that the VBS caused by the Ni impurity is responsible for the spin flip of Fe1 d states.

Keywords

References

  1. E. A. Owen and Y. H Liu, J. Iron St. Inst. 163, 132 (1949)
  2. A. R. Williams, V. L. Moruzzi, and C. D. Gelatt, J. Magn. Magn. Mater. 31, 88 (1983) https://doi.org/10.1016/0304-8853(83)90166-X
  3. R. Meyer and P. Entel, Phys. Rev. B 57, 5140 (1998) https://doi.org/10.1103/PhysRevB.57.5140
  4. J. B. Filho and C. A. Kuhnen, Barz. J. Phys. 23, 288 (1993)
  5. Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos, Acta Mate. 53, 4029 (2005) https://doi.org/10.1016/j.actamat.2005.05.001
  6. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 6864 (1981)
  7. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) https://doi.org/10.1103/PhysRevLett.77.3865
  9. Y. J. Jin and Jae Il Lee, J. Magnetics 12(2), 59 (2007) https://doi.org/10.4283/JMAG.2007.12.2.059
  10. Y. J. Jin and Jae Il Lee, J. Magnetics 12(3), 97 (2007) https://doi.org/10.4283/JMAG.2007.12.3.097
  11. B. Bial/ek and J. I. Lee, J. Magnetics 12(3), 93 (2007) https://doi.org/10.4283/JMAG.2007.12.3.093
  12. J. H. Lee, T. Shishidou, and A. J. Freeman, Phys. Rev. B 66, 233102 (2002) https://doi.org/10.1103/PhysRevB.66.233102
  13. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976) https://doi.org/10.1103/PhysRevB.13.5188
  14. F. Birch, Phys. Rev. 71, 809 (1947) https://doi.org/10.1103/PhysRev.71.809
  15. D.-K. Lee and S. C. Hong, J. Magnetics 12(2), 68 (2007) https://doi.org/10.4283/JMAG.2007.12.2.068
  16. G. Y. Guo and H. H. Wang, Chin. J. Phys. 38, 949 (2000)
  17. C. Kittel, Introduction to Solid State Physics 7th ed. (Wiley, New York, 1996)
  18. L. W. McKeehan, Phys. Rev. 21, 402 (1923) https://doi.org/10.1103/PhysRev.21.402
  19. J. Crangle and G. C. Hallam, Proc. Roy. Soc. A 272, 119 (1963)
  20. V. A. Gubanov, A. L. Liechtenstein, and A. V. Postnikov, Magnetism and the Electronic Structure of Crystals (Springer, Berlin, 1992)
  21. J. H. Park, S. K. Kwon, and B. I. Min, J. Magnetics 12(2), 64 (2007) https://doi.org/10.4283/JMAG.2007.12.2.064

Cited by

  1. The evolution of electronic configuration and magnetic characterization of Fe9Ni1, Fe8Ni2 alloy in theoretical calculation vol.86, pp.10, 2013, https://doi.org/10.1140/epjb/e2013-40441-4
  2. Electronic Effect of V, Ti, and Sc Impurities on the Hyperfine Interactions of Fe Atoms in α-Fe: A First Principles Study vol.20, pp.2, 2017, https://doi.org/10.1590/1980-5373-mr-2016-0662
  3. -electron behavior analysis vol.31, pp.11, 2019, https://doi.org/10.1088/1361-648X/aafd00