The Effect of Extremely Low Frequency Electromagnetic Fields on the Chromosomal Instability in Bleomycin Treated Fibroblast Cells

Bleomycin이 처리된 사람 섬유아세포에서 극저주파 전자기장의 효과

  • Cho, Yoon-Hee (School of Public Health, Seoul National University) ;
  • Kim, Yang-Jee (School of Public Health, Seoul National University) ;
  • Lee, Joong-Won (School of Public Health, Seoul National University) ;
  • Kim, Gye-Eun (School of Public Health, Seoul National University) ;
  • Chung, Hai-Won (School of Public Health, Seoul National University)
  • Published : 2008.12.30

Abstract

In order to determine the effect of extremely low frequency electromagnetic fields (ELF-EMF) on the frequency of micronuclei (MN), aneuploidy and chromosomal rearrangement induced by bleomycin (BLM) in human fibroblast cells, a 60 Hz ELF-EMF of 0.8 mT field strength was applied either alone or with ELM throughout the culture period and a micronucleus-centromere assay was performed. Our results indicate that the frequencies of MN, aneuploidy and chromosomal rearrangement induced by ELM increased in a dose-dependent manner. The exposure of cells to 0.8 mT ELF-EMF followed by ELM exposure for 3 hours led to significant increases in the frequencies of MN and aneuploidy compared to BLM treatment for 3 hours alone (p<0.05), but no significant difference was observed between field exposed and sham exposed control cells. The obtained results suggest that low density ELF-EMF could act as an enhancer of the initiation process of BLM rather than as an initiator of mutagenic effects in human fibroblast.

극저주파 전자기장의 노출과 여러 암 발생과의 연관성을 구명하기 위해 많은 연구가 이루어지고 있으나 아직도 결론을 내리기에는 논란이 있다. 본 연구에서는 극저주파 전자가장이 소핵, 이수성 및 염색제 재배열과 같은 염색체 손상을 유도하는지 여부와 bleomycin (BLM) 에 악해 유발된 염색체 손상 빈도를 증진시키는지 확인하기 위해 사람 섬유아세포에 BLM과 0.8mT 세기의 극저주파 전자가장을 노출시킨 후 micronucleus - centromere 분석을 수행하였다. BLM의 농도에 따라 소핵, 이수성 및 염색체 재배열의 빈도가 유의하게 증가하 였으며(p<0.05), 0.8 mT 세기의 극저주파 전자기장은 단독으로 사람 섬유아세포에 염색체 손상을 유도하지 않았으나, BLM에 의해 유발된 소핵과 이수성의 빈도를 유의하게 증가시켰다(p<0.05). 따라서 극저주파 전자기장은 단독으로 사람 섬유아세포에 유전독성을 일으키지 않으나 BLM에 의한 소핵과 이수성 빈도를 증폭하는 효과를 나타낸다.

Keywords

References

  1. Wertheimer N, Lepper E. Childhood cancer in relation to indicators of magnetic fields from current sources. Am. J. Epidemiol. 1979;109:273-284 https://doi.org/10.1093/oxfordjournals.aje.a112681
  2. Miller AB, To T, Agnew DA, Wall C, Green LM. Leukemia following occupational exposure to 60 Hz electric and magnetic fields among Ontario electric utility workers. Am. J. Epidemiol. 1996;144:150-160 https://doi.org/10.1093/oxfordjournals.aje.a008902
  3. Savitz DA, Loomis DP. Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers. Am. J. Epidemiol. 1995;141:123-134 https://doi.org/10.1093/oxfordjournals.aje.a117400
  4. Nordenson I, Mild KH, Jarventaus H, Hirvonen A, Sandstrom M, Wilen J, Blix N, Norppa H. Chromosomal aberrations in peripheral lymphocytes of train engine drivers, Bioelectromagnetics 2001;22:306-315 https://doi.org/10.1002/bem.55
  5. Winker R, Ivancsits S, Pilger A, Adlkofer F, Rudiger HW. Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low frequency electromagnetic fields. Mutat. Res. 2005;585:43-49 https://doi.org/10.1016/j.mrgentox.2005.04.013
  6. Ivancsits S, Pilger A, Diem E, Jahn O, Rudiger HW. Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat. Res. 2005;583:184-188 https://doi.org/10.1016/j.mrgentox.2005.03.011
  7. Washburn EP, Orza MJ, Berlin J, Nicholson WJ, Todd AC, Frumkin H, Chalmers C. Residential proximity to electricity transmission and distribution equipment and risk of childhood leukemia, childhood lymphoma, and childhood nervous system tumors: Systematic review, evaluation, and meta-analysis. Cancer Causes Control 1994;5:299-309 https://doi.org/10.1007/BF01804980
  8. Kheifets LI, Afifi AA, Buffler PA, Zhang ZW. Occupational electric and magnetic field exposure and brain cancer: a meta-analysis. J. Occup. Environ. Med. 1995;37:1327-1341 https://doi.org/10.1097/00043764-199512000-00002
  9. Juutilainen J, Lang S, Rytomaa T. Possible cocarcinogenic effects of ELF electromagnetic fields may require repeated long-term interaction with known carcinogenic factors. Bioelectromagnetics 2000;21:122-128 https://doi.org/10.1002/(SICI)1521-186X(200002)21:2<122::AID-BEM7>3.0.CO;2-D
  10. Walleczek J, Shiu EC, Hahn GM. Increase in radiation-induced HPRT gene mutation frequency after nonthermal exposure to nonionizing 60 Hz electromagnetic fields. Radiat. Res. 1999;151:489-497 https://doi.org/10.2307/3579837
  11. Cho YH, Chung HW. The effect of extremely low frequency electromagnetic field (ELF-EMF) on the frequency of micronuclei and sister chromatid exchange in human lymphocytes induced by benzo(a)pyrene. Toxicol. Lett. 2003;143:37-44 https://doi.org/10.1016/S0378-4274(03)00111-5
  12. Cho YH, Jeon HK, and Chung HW. Effects of Extremely Low-Frequency Electromagnetic Fields on Delayed Chromosomal Instability Induced by Bleomycin in Normal Human Fibroblast Cells. Journal of Toxicology and Environmental Health, Part A 2007;70:1252-1258 https://doi.org/10.1080/15287390701429281
  13. Loescher W, Mevissen M. Animal studies on the role of 50/60 Hz magnetic fields in carcinogenesis. Life Sci. 1994;54:1531-1543 https://doi.org/10.1016/0024-3205(94)90024-8
  14. Mevissen M, HauBler M, Lerchl A, Loscher W. Acceleration of mammary tumorigenesis by exposure of 7,12-dimethylbenz(a)anthracene-$100{\mu}T$ magnetic field: Replication study. J. Toxicol. Environ. Health A 1998;53:401-418 https://doi.org/10.1080/009841098159259
  15. Miyakoshi J, Yamagishi N, Ohtsu S, Mohri K, Takebe H. Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to high-density 50-Hz magnetic fields. Mutat Res. 1996;349:109-114 https://doi.org/10.1016/0027-5107(95)00166-2
  16. Simko M, Dopp E, Kriehuber R. Absence of synergistic effects on micronucleus formation after exposure to electromagnetic fields and asbestos fibers in vitro. Toxicol. Lett. 1999;108:47-53 https://doi.org/10.1016/S0378-4274(99)00115-0
  17. Stronati L, Testa A, Villani P, Marino C, Lovisolo GA, Conti D, Russo F, Fresegna AM, Cordelli E. Absence of Genotoxicity in human blood cells exposed to 50Hz magnetic fields as assessed by comet assay, chromosome aberration, micronucleus and sister chromatid exchange analysis. Bioelectromagnetics 2004;25:41-48 https://doi.org/10.1002/bem.10141
  18. Testa A, Cordilli E, Stronati L, Lovisolo GA, Fresegna AM, Conti D, Villani P. Evaluation of genotoxic effect of low level 50Hz magnetic fields on human blood cells using different cytogenetic assays. Bioelectromagnetics 2004;25:613-619 https://doi.org/10.1002/bem.20048
  19. Fenech M. The in vitro micronucleus technique. Mutat. Res. 2000;455:81-95 https://doi.org/10.1016/S0027-5107(00)00065-8
  20. Sgura A, Antoccia A, Ramirez MJ, Marcos R, Tanzarella C, Degrassi F. Micronuclei, centromere-positive micronuclei and chromosome nondisjunction in cytokinesis blocked human lymphocytes following mitomycin C or vincristine treatment. Mutat. Res. 1997;392:97-107 https://doi.org/10.1016/S0165-1218(97)00048-7
  21. Tucker JD, Morgan WF, Awa AA, Bauchinger M, Blakey D, Cornforth MN, Littlefield LG, Natarajan AT, Shasserre C. A proposed system for scoring structural aberrations detected by chromosome painting. Cytogenet. Cell Genet. 1995;68:211-221 https://doi.org/10.1159/000133916
  22. Cohen MM, Kunska A, Astemborski JA, McCulloch D. The effect of low-level 60-Hz electromagnetic fields on human lymphoid cells. II. Sister-chromatid exchanges in peripheral lymphocytes and lymphoblastoid cell lines. Mutat. Res. 1986;172:177-184 https://doi.org/10.1016/0165-1218(86)90073-X
  23. Antonopoulos A, Yang B, Stamm A, Heller WD, Obe G. Cytological effects of 50 Hz electromagnetic fields on human lymphocytes in vitro. Mutat. Res. 1995;346:151-157 https://doi.org/10.1016/0165-7992(95)90047-0
  24. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, Grass IC, Azzena GB, Cittadini A. 50Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism. Biochim. Biophys. Acta. 2005;1743:120-129 https://doi.org/10.1016/j.bbamcr.2004.09.005
  25. Countryman PI, Heddle JA. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat. Res. 1976;41:321-332 https://doi.org/10.1016/0027-5107(76)90105-6
  26. Vig BK, Swearngin SE. Sequence of centromere separation: Kinotochore formation in induced laggards and micronuclei. Mutatgenesis 1986;1:461-465 https://doi.org/10.1093/mutage/1.6.461
  27. Ding GR, Nakahara T, Miyakoshi J. Induction of kinetochore-positive and kinetochore-negative micronuclei in CHO cells by ELF magnetic fields and/or X-rays. Mutagenesis 2003;18:439-443 https://doi.org/10.1093/mutage/geg019
  28. McLean JR, Thansandote A, Lecuyer D, Goddand M, Tryphmas L, Scaiano JC, Johnson F. A 60 Hz magnetic field increases the incidence of squamous cell carcinomas in mice previously exposed to chemical carcinogens. Cancer Lett. 1995;92:121-125 https://doi.org/10.1016/0304-3835(95)03766-P
  29. Mandeville R, Franco E, Sidrac-Ghali S, Paris-Nadon L, Rocheleau N, Mercier G, Desy M, Devaux C, Gaboury L. Evaluation of the potential promoting effect of 60 Hz magnetic fields on N-ethyl-N-nitrosourea induced neurogenic tumors in female F344 rats. Bioelectromagnetics 2000;21:84-93 https://doi.org/10.1002/(SICI)1521-186X(200002)21:2<84::AID-BEM2>3.0.CO;2-B
  30. Chung MK, Kim YB, Ha CS, Myung SH. Lack of a copromotion effect of 60 Hz rotating magnetic fields on Nethyl-N-nitrosourea induced neurogenic tumors in F344 rats. Bioelectromagnetics 2008;29:539-548 https://doi.org/10.1002/bem.20422
  31. Yaguchi H, Yoshida M, Ejima Y, Miyakoshi J. Effect of high-density extremely low frequency magnetic field on sister chromatid exchanges in mouse m5S cells. Mutat. Res. 1999;440:189-194 https://doi.org/10.1016/S1383-5718(99)00027-3
  32. Katsir G, Parola AH. Enhanced proliferation caused by a low frequency weak magnetic field in chick embryo fibroblasts is suppressed by radical scavengers. Biochem. Biophys. Res. Commun. 1998;252:753-756 https://doi.org/10.1006/bbrc.1998.9579
  33. Lacy-Hulbert A, Metcalfe JC, Hesketh R. Biological responses to electromagnetic fields. FASEB J. 1998;12:395-420 https://doi.org/10.1096/fasebj.12.6.395
  34. Fernie KJ, Reynolds SJ. The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: A review. J. Toxicol. Environ. Health B 2005;8:127-140 https://doi.org/10.1080/10937400590909022
  35. Cridland NA, Haylock RG, Saunders RD. 50 Hz magnetic field exposure alters onset of S-phase in normal human fibroblasts. Bioelectromagnetics 1999;20:446-452 https://doi.org/10.1002/(SICI)1521-186X(199910)20:7<446::AID-BEM6>3.0.CO;2-C
  36. Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint, Nat. Rev. Cancer 2005;5:773-785 https://doi.org/10.1038/nrc1714
  37. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B. Mutations of mitotic checkpoint genes in human cancers, Nature 1998;392:300-303 https://doi.org/10.1038/32688
  38. Foijer F, Draviam VM, Sorger PK. Studying chromosome instability in the mouse. Biochim. Biophys. Acta. 2008;26:In press
  39. Takahashi T, Haruki N, Nomoto S, Masuda A, Saji S, Osada H, Takahashi T. Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers, Oncogene 1999;18:4295-4300 https://doi.org/10.1038/sj.onc.1202807