DOI QR코드

DOI QR Code

Microstructural Evolution during Hot Deformation of Molybdenum using Processing Map Approach

변형지도 모델링을 통한 몰리브데늄의 고온 변형에 따른 미세조직 변화 연구

  • Kim, Young-Moo (Defense Material and Evaluation Technology Directorate, The 4th Research and Development Institute, Agency for Defense Development) ;
  • Lee, Sung-Ho (Defense Material and Evaluation Technology Directorate, The 4th Research and Development Institute, Agency for Defense Development) ;
  • Lee, Seong (Defense Material and Evaluation Technology Directorate, The 4th Research and Development Institute, Agency for Defense Development) ;
  • Noh, Joon-Woong (Defense Material and Evaluation Technology Directorate, The 4th Research and Development Institute, Agency for Defense Development)
  • 김영무 (국방과학연구소 제4기술연구본부 국방소재기술부) ;
  • 이성호 (국방과학연구소 제4기술연구본부 국방소재기술부) ;
  • 이성 (국방과학연구소 제4기술연구본부 국방소재기술부) ;
  • 노준웅 (국방과학연구소 제4기술연구본부 국방소재기술부)
  • Published : 2008.12.28

Abstract

The hot deformation characteristics of pure molybdenum was investigated in the temperature range of $600{\sim}1200^{\circ}C$ and strain rate range of $0.01{\sim}10.0/s$ using a Gleeble test machine. The power dissipation map for hot working was developed on the basis of the Dynamic Materials Model. According to the map, dynamic recrystallization (DRX) occurs in the temperature range of $1000{\sim}1100^{\circ}C$ and the strain rate range of $0.01{\sim}10.0/s$, which are the optimum conditions for hot working of this material. The average grain size after DRX is $5{\mu}m$. The material undergoes flow instabilities at temperatures of $900{\sim}1200^{\circ}C$ and the strain rates of $0.01{\sim}10.0/s$, as calculated by the continuum instability criterion.

Keywords

References

  1. E. L. Baker, G. Voorhis, R. Campbell and C. Choi: Molybdenum and Molybdenum Alloys, A. Crowson, E. S. Chen, J. A. Chields and P. R. Subramanian (Ed.), TMS Symp. Proc., San Antonio (1998) 173
  2. K. J. A. Mawella, D. J. Standing, K. G. Cowan and J. S. Jones: Molybdenum and Molybdenum Alloys, A. Crowson, E. S. Chen, J. A. Chields and P. R. Subramanian (Ed.), TMS Symp. Proc., San Antonio (1998) 183
  3. W. L. Bruckart: The Metal Molybdenum, J. J. Harwood (Ed.), American Society for Metals, Cleveland (1956) 109
  4. Y. V. R. K. Prasad, S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM International (1997)
  5. H. J. Frost and M. F. Ashby: Deformation Mechanism Maps, Pergamon Press (1982)
  6. R. Raj: Metall. Trans. A, 12A (1989) 1089 https://doi.org/10.1007/BF02643490
  7. Y. Liu, R. Hu, J. Li, H. Kou, H. Li, H. Chang and H. Fu: J. Mat. Proc. Tech., Article in Press (2008)
  8. N. Ravichandran and Y. V. R. K. Prasad: Metall. Trans. A, 22A (1991) 2339 https://doi.org/10.1007/BF02665000
  9. S. Ramanathan, R. Karthikeyan and G. Ganasen: Mat. Sci. Eng. A, 441 (2006) 321 https://doi.org/10.1016/j.msea.2006.08.044
  10. R. Lyszkowski and J. Bystrzyscki: Intermetallics, 14 (2006) 1231 https://doi.org/10.1016/j.intermet.2005.12.014
  11. J. Liu, Z. Cui and C. Li: J. Mat. Proc. Tech., 205 (2008) 497 https://doi.org/10.1016/j.jmatprotec.2007.11.308
  12. Y. Kim: J. Korean Powder Metall. Inst., 15 (2008) 214 (Korean) https://doi.org/10.4150/KPMI.2008.15.3.214
  13. H. Ziegler: Progress in Solid Mechanics, Wiley, New York (1963) 93

Cited by

  1. Microstructural Evolution during Hot Deformation of P/M Copper using Processing Map vol.19, pp.2, 2012, https://doi.org/10.4150/KPMI.2012.19.2.134