References
- Aronszajn, N. (1950). Theory of reproducing kernels, Transactions of the American Mathematical Society, 68, 337-404 https://doi.org/10.2307/1990404
- Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvoluting a density, Journal of the American Statistical Association, 83, 1184-1886 https://doi.org/10.2307/2290153
- Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems, The Annals of Statistics, 19, 1257-1272 https://doi.org/10.1214/aos/1176348248
- Gunn, S. R. (1998). Support vector machines for classi¯cation and regression. Technical report. University of Southampton
- Lee, S. (2001). A note on strongly consistent wavelet density estimator for the deconvolution problem, The Korean Communications in Statistics, 8, 859-866
- Lee, S. (2002). A note on Central limit theorem for deconvolution wavelet density estimator, The Korean Communications in Statistics, 9, 241-248 https://doi.org/10.5351/CKSS.2002.9.1.241
- Lee, S. and Hong, D. H. (2002). On a strongly consistent wavelet density estimator for the deconvolution problem, Communications in Statistics - Theory and Methods, 31, 1259-1272 https://doi.org/10.1081/STA-120006067
- Lee, S. and Taylor, R. L. (2008). A note on support vector density estimation for the deconvolution problem, Communications in Statistics - Theory and Methods, 37, 328-336 https://doi.org/10.1080/03610920701653086
- Liu, M. C. and Taylor, R. L. (1989). A consistent nonparametric density estimator for the deconvolution problem, The Canadian Journal of Statistics, 17, 427-438 https://doi.org/10.2307/3315482
- Louis, T. A. (1991). Using empirical Bayes methods in biopharmaceutical research, Statistics in Medicine, 10, 811-827 https://doi.org/10.1002/sim.4780100604
- Mukherjee, S. and Vapnik, V. (1999). Support vector method for multivariate density estimation. Technical Report. A.I. Memo no. 1653, MIT AI Lab
- Nadaraya, E. (1964). On regression estimators, Theory of Probability and It's Application, 9, 157-159
- Pensky, M. and Vidakovic, B. (1999). Adaptive wavelet estimator for nonparametric density deconvolutoin, The Annals of Statistics, 27, 2033-2053 https://doi.org/10.1214/aos/1017939249
- Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer Verlag, New York
- Vapnik, V. and Chervonenkis, A. (1964). A note on one class of perceptrons, Automation and Remote Control, 25
- Vapnik, V. and Lerner, A. (1963). Pattern recognition using generalized portrait method, Automation and Remote Control, 24
- Walter, G. G. (1999). Density estimation in the presence of noise, Statistics & Probability Letters, 41, 237-246 https://doi.org/10.1016/S0167-7152(98)00160-6
- Watson, G. S. (1964). Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Ser. A, 26, 359-372
- Weston, J., Gammerman, A., Stitson, M., Vapnik, V., Vovk, V. and Watkins, C. (1999). Support vector density estimation, In Scholkopf, B. and Smola, A., editors, Advances in Kernel Methods-Suppot Vector Learning, 293-306, MIT Press, Cambridge, MA
- Zhang, H. P. (1992). On deconvolution using time of flight information in positron emission tomography, Statistica Sinica, 2, 553-575