DOI QR코드

DOI QR Code

혼합보증이 종료된 이후의 비용과 비가동시간에 근거한 보전정책

Maintenance Policy Based on Cost and Downtime Following the Expiration of Combination Warranty

  • 정기문 (경성대학교 정보통계학과)
  • Jung, Ki-Mun (Department of Informational Statistics, Kyungsung University)
  • 발행 : 2008.11.30

초록

본 논문에서는 수리가 가능한 시스템에 대하여 혼합보증이 종료된 이후의 교체모형과 예방보전모형을 고려하는데, 만약 보증기간이 종료된 이후에 시스템에 고장이 발생하면 최소수리를 수행한다. 최적의 교체정책과 최적의 예방보전정책을 결정하기 위한 기준으로는 기대비용과 기대비가동시간에 근거한 총밸류함수를 사용한다. 그리고 시스템의 고장시간이 와이블분포를 할 때 수치적 예를 통해서 제안된 최적의 교체정책 및 예방보전정책을 자세히 설명하고자 한다.

This paper considers the replacement model and the preventive maintenance model following the expiration of combination warranty for a repairable system. If the system fails after the combination warranty is expired, then it is minimally repaired at each failure. The criterion used to determine the optimal replacement policy and the optimal preventive maintenance policy is the overall value function based on the expected cost rate per unit time and the expected downtime per unit time. The numerical examples are presented for illustrative purpose when the failure time follows a Weibull distribution.

키워드

참고문헌

  1. Canfield, R. V. (1986). Cost optimization of periodic preventive maintenance, IEEE Transactions on Reliability, 35, 78-81 https://doi.org/10.1109/TR.1986.4335355
  2. Jiang, R. and Ji, P. (2002). Age Replacement policy: A multi-attribute value model, Reliability Engineering and System Safety, 76, 311-318 https://doi.org/10.1016/S0951-8320(02)00021-2
  3. Jung, G. M. (2002). Optimal replacement policy for a repairable system with combination warranty, The Korean Journal of Applied Statistics, 15, 107-117 https://doi.org/10.5351/KJAS.2002.15.1.107
  4. Jung, K. M. (2008). Optimization of cost and downtime for periodic PM model following the expiration of warranty, Journal of Korean Data & Information Science Society, 19, 587-596
  5. Jung, K. M., Han, S. S. and Park, D. H. (2008). Optimization of cost and downtime for replacement model following the expiration of warranty, Reliability Engineering & System Safety, 93, 995-1003 https://doi.org/10.1016/j.ress.2007.05.005
  6. Jung, G. M. and Park, D. H. (2003). Optimal maintenance policies during the postwarranty period, Reliability Engineering & System Safety, 82, 173-185 https://doi.org/10.1016/S0951-8320(03)00144-3
  7. Lin, D., Zuo, M. J. and Yam, R. C. M. (2000). General sequential imperfect preventive maintenance models, International Journal of Reliability, Quality and Safety Engineering, 7, 253-266
  8. Malik, M. A. K. (1979). Reliable preventive maintenance scheduling, IIE Transactions, 11, 221-228 https://doi.org/10.1080/05695557908974463
  9. Nakagawa, T. (1986). Periodic and sequential preventive maintenance policies, Journal of Applied Probability, 23, 536-542 https://doi.org/10.2307/3214197
  10. Nakagawa, T. (1988). Sequential imperfect preventive maintenance policies, IEEE Transactions on Reliability, 37, 295-298 https://doi.org/10.1109/24.3758
  11. Sahin, I. and Polatoglu, H. (1996). Maintenance strategies following the expiration of warranty, IEEE Transactions on Reliability, 45, 220-228 https://doi.org/10.1109/24.510805
  12. Wu, S. and Clements-Croome, D. (2005). Preventive maintenance models with random maintenance quality, Reliability Engineering & System Safety, 90, 99-105 https://doi.org/10.1016/j.ress.2005.03.012