DOI QR코드

DOI QR Code

Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism

  • Seo, Jin-A (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Hye-Min (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2008.10.20

Abstract

Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 3,4-dinitrophenyl benzoates (5b) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. The kinetic data have been compared with the data reported previously for the corresponding reactions of 2,4- dinitrophenyl benzoates (5a) to investigate the effect of changing the nucleofuge from 2,4-dinitrophenoxide to 3,4-dinitrophenoxide on reactivity and mechanism. The kinetic results show that aminolyses of 5a and 5b proceed through the same mechanism, i.e., a zwitterionic tetrahedral intermediate ($T^{\pm}$) with a change in the rate-determining step (RDS). Substrate 5a is more reactive than 5b when breakdown of $T^{\pm}$ is the RDS but less reactive when formation of $T^{\pm}$ is the RDS. Dissection of kN values into the microscopic rate constants (e.g., $k_1$ and $k_2/k_{-1 }$ ratio) has revealed that 5a results in larger $k_2/k_{-1}$ ratios but smaller k1 values than 5b for all the amines studied. Since 2,4-dinitrophenoxide is less basic and a better nucleofuge than 3,4-dinitrophenoxide, the larger $k_2/k_{-1}$ ratios determined for the reactions of 5a than for those of 5b are as expected. The steric hindrance exerted by the ortho-nitro group on 5a contributes to the smaller k1 values found for the reactions of 5a than for those of 5b.

Keywords

References

  1. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw- Hill: New York, 1969, pp 480-483
  2. Jencks, W. P. J. Chem. Soc. Rev. 1981, 10, 345-375 https://doi.org/10.1039/cs9811000345
  3. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637 https://doi.org/10.1021/ja01012a030
  4. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970 https://doi.org/10.1021/ja00463a032
  5. Williams, A. Adv. Phys. Org. Chem. 1992, 27, 2-55
  6. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829 https://doi.org/10.1021/ja00766a027
  7. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Phy. Org. Chem 2008, 21, 271-278 https://doi.org/10.1002/poc.1312
  8. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Leis, J. R.; Garcia-Rio, L.; Santos, J. G. J. Phy. Org. Chem. 2008, 21, 102-107 https://doi.org/10.1002/poc.1286
  9. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phy. Org. Chem. 2008, 21, 62-67 https://doi.org/10.1002/poc.1285
  10. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135 https://doi.org/10.1002/poc.1007
  11. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  12. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  13. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  14. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685 https://doi.org/10.1021/jo047742l
  15. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674 https://doi.org/10.5012/bkcs.2007.28.10.1670
  16. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797-1802 https://doi.org/10.5012/bkcs.2007.28.10.1797
  17. Kim, C. K.; Kim, D. J.; Zhang, H.; Hsieh, Y. H.; Lee, B. S.; Lee, H. W.; Kim, C. K. Bull. Korean Chem. Soc. 2007, 28, 1031-1034 https://doi.org/10.5012/bkcs.2007.28.6.1031
  18. Ehtesham, M. H. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936-940 https://doi.org/10.5012/bkcs.2007.28.6.936
  19. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430 https://doi.org/10.1016/j.cplett.2006.11.002
  20. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803 https://doi.org/10.1021/jo0606958
  21. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197 https://doi.org/10.1021/jo061682x
  22. Um, I. H.; Kim, E. Y.; Park, H. R. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  23. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979- 2985 https://doi.org/10.1039/b607194e
  24. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  25. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  26. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237- 1243 https://doi.org/10.1002/chem.200500647
  27. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  28. Um, I. H.; Akhtar, K.; Park, Y. M.; Khan, S. Bull. Korean Chem. Soc. 2007, 28, 1353-1357 https://doi.org/10.5012/bkcs.2007.28.8.1353
  29. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659- 666 https://doi.org/10.1139/cjc-77-5-6-659
  30. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  31. Techniques of Organic Chemistry, 4th ed.; Bernasconi, C. F., Ed.; Wiley: New York, 1986; vol. 6
  32. Techniques of Organic Chemistry, 3rd ed.; Lewis, E. S., Ed.; Wiley: New York, 1974; vol. 6, part 1
  33. Advences in Linear Free Energy Relationship; Chapman, N. B.; Shorter, J., Eds.; Plenum: London, 1972
  34. Um, I. H.; Akhtar, K. Bull. Korean Chem. Soc. 2008, 29, 772- 776 https://doi.org/10.5012/bkcs.2008.29.4.772
  35. Um, I. H.; Seo, J. A.; Chun, S. M. Bull. Korean Chem. Soc. 2008, 29, 1359-1363 https://doi.org/10.5012/bkcs.2008.29.7.1359
  36. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  37. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829 https://doi.org/10.1021/jo070171n
  38. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  39. Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829

Cited by

  1. A Mechanistic Study on Alkaline Hydrolysis of Y-Substituted Phenyl Benzenesulfonates vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2477
  2. The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2393
  3. Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. T vol.30, pp.12, 2008, https://doi.org/10.5012/bkcs.2009.30.12.2913
  4. Evidence for Hypervalent Intermediate in Aminolysis Reaction of Ethylbenzene Sulfinate vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.493
  5. Aminolysis of Methylbenzene Sulfinate: Definitive Evidence for a Stepwise Mechanism vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1893
  6. A Kinetic Study on Aminolysis of S-4-Nitrophenyl Thiobenzoate in H2O Containing 20 mol % DMSO and 44 wt % EtOH: Effect of Medium on Reactivity and Mechanism vol.30, pp.1, 2008, https://doi.org/10.5012/bkcs.2009.30.1.214
  7. Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion vol.31, pp.3, 2008, https://doi.org/10.5012/bkcs.2010.31.03.689
  8. Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism vol.31, pp.7, 2008, https://doi.org/10.5012/bkcs.2010.31.7.1915
  9. Kinetics and Mechanism of Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Carbonates vol.31, pp.7, 2008, https://doi.org/10.5012/bkcs.2010.31.7.2015
  10. Nonlinear Hammett plots in pyridinolysis of 2,4-dinitrophenyl X-substituted benzoates: change in RDS versus resonance contribution vol.8, pp.16, 2008, https://doi.org/10.1039/c0ob00031k
  11. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Diphenylphosphinothioates: Steric Hindrance versus Nucleofugality in Nucleophilic Substitution Reactions vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.2117
  12. Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect vol.34, pp.1, 2008, https://doi.org/10.5012/bkcs.2013.34.1.49