DOI QR코드

DOI QR Code

Density Functional Study on the C-H Bond Cleavage of Aldimine by a Rhodium(I) Catalyst

  • Yoo, Kyung-Hwa (Department of Chemistry and Institute for Nano-Bio Molecular Assemblies, Yonsei University) ;
  • Jun, Chul-Ho (Department of Chemistry and Institute for Nano-Bio Molecular Assemblies, Yonsei University) ;
  • Choi, Cheol-Ho (Department of Chemistry, Kyungpook National University) ;
  • Sim, Eun-Ji (Department of Chemistry and Institute for Nano-Bio Molecular Assemblies, Yonsei University)
  • Published : 2008.10.20

Abstract

We investigated the C-H bond activation mechanism of aldimine by the [RhCl$(PPH_3)_3$] model catalyst using DFT B3LYP//SBKJC/6-31G*/6-31G on GAMESS. Due to their potential utility in organic synthesis, C-H bond activation is one of the most active research fields in organic and organometallic chemistry. C-H bond activation by a transition metal catalyst can be classified into two types of mechanisms: direct C-H bond cleavage by the metal catalyst or a multi-step mechanism via a tetrahedral transition state. There are three structural isomers of [RhCl$(PH_3)_2$] coordinated aldimine that differ in the position of chloride with respect to the molecular plane. By comparing activation energies of the overall reaction pathways that the three isomeric structures follow in each mechanism, we found that the C-H bond activation of aldimine by the [RhCl$(PH_3)_3$] catalyst occurs through the tetrahedral intermediate.

Keywords

References

  1. Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154 https://doi.org/10.1021/ar00051a009
  2. Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353 https://doi.org/10.1021/cr980404y
  3. Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879 https://doi.org/10.1021/cr9411886
  4. Dyker, G. Angew. Chem. Int. Ed. 1999, 38, 1698 https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6
  5. Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826 https://doi.org/10.1021/ar960318p
  6. Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077 https://doi.org/10.1002/adsc.200303094
  7. Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org. Chem. 1990, 55, 1286 https://doi.org/10.1021/jo00291a035
  8. Lenges, C. P.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 6965 https://doi.org/10.1021/ja980610n
  9. Kondo, T.; Hiraishi, N.; Morisaki, Y.; Wada, K.; Watanabe, Y.; Mitsudo, T. Organometallics 1998, 17, 2131 https://doi.org/10.1021/om971084w
  10. Tanaka, M.; Imai, M.; Yamamoto, Y.; Tanaka, K.; Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. Org. Lett. 2003, 5, 1365 https://doi.org/10.1021/ol034343o
  11. Kokubo, K.; Matsumasa, K.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564 https://doi.org/10.1021/jo9709458
  12. Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200 https://doi.org/10.1021/jo961887d
  13. Jun, C.-H.; Huh, C.-W.; Na, S.-J. Angew. Chem. Int. Ed. 1998, 37, 145 https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<145::AID-ANIE145>3.0.CO;2-0
  14. Jun, C.-H.; Hong, J.-B. Org. Lett. 1999, 1, 887. (d) Jun, C.-H.; Lee, H.; Hong, J.-B.; Kwon, B.-I. Angew. Chem. Int. Ed. 2002, 41, 2146 https://doi.org/10.1002/1521-3773(20020617)41:12<2146::AID-ANIE2146>3.0.CO;2-2
  15. Jun, C.-H.; Lee, H.; Hong, J.-B. Angew. Chem. Int. Ed. 2000, 39, 3070 https://doi.org/10.1002/1521-3773(20000901)39:17<3070::AID-ANIE3070>3.0.CO;2-G
  16. Jun, C.-H.; Moon, C. W.; Lee, D.-Y. Chem. Eur. J. 2002, 8, 2422 https://doi.org/10.1002/1521-3765(20020603)8:11<2422::AID-CHEM2422>3.0.CO;2-B
  17. Jun, C.-H. Lee, H.; Hong, J.-B.; Kwon, B.-I. Angew. Chem. Int. Ed. 2002, 41, 2146-2147 https://doi.org/10.1002/1521-3773(20020617)41:12<2146::AID-ANIE2146>3.0.CO;2-2
  18. Park, Y. J.; Kwon, B.-I.; Ahn, J.-A.; Lee, H.; Jun, C.-H. J. Am. Chem. Soc. 2004, 126, 13892-13893 https://doi.org/10.1021/ja045789i
  19. Jo, E.-A.; Jun, C.-H. Eur. J. Org. Chem. 2006, 2504-2507
  20. Suggs, J. W. J. Am. Chem. Soc. 1979, 101, 489 https://doi.org/10.1021/ja00496a040
  21. Heiberg, H.; Gropen, O.; Swang, O. Int. J. Quantum Chem. 2003, 92, 391 https://doi.org/10.1002/qua.10525
  22. Broclawik, E.; Haber, J.; Piskorz, W. Chem. Phys. Lett. 2001, 333, 332 https://doi.org/10.1016/S0009-2614(00)01429-9
  23. Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 2452 https://doi.org/10.1021/ja0576684
  24. Yoshizawa, K.; Shiota, Y.; Yamabe, T. Organometallics 1998, 17, 2825 https://doi.org/10.1021/om980067j
  25. Jazzar, R. F. R.; Varrone, M.; Burrows, A. D.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. Inorg. Chim. Acta 2006, 359, 815 https://doi.org/10.1016/j.ica.2005.05.021
  26. Crabtree, R. H. Chem. Rev. 1985, 85, 245 https://doi.org/10.1021/cr00068a002
  27. Markies, B. A.; Wijkens, P.; Kooijman, H.; Spek, A. L.; Boersma, J.; van Koten, G. J. Chem. Soc., Chem. Commun. 1992, 1420
  28. Gozin, M.; Weisman, A.; Ben-David, Y.; Milstein, D. Nature 1993, 364, 600 https://doi.org/10.1038/364600a0
  29. van der Boom, M. E.; Minstein, D. Chem. Rev. 2003, 103, 1759 https://doi.org/10.1021/cr960118r
  30. Vigalok, A.; Milstein, D. Acc. Chem. Res. 2001, 34, 798 https://doi.org/10.1021/ar970316k
  31. Stevens, W. J.; Basch, H.; Krauss, M. J. Chem. Phys. 1984, 81, 6026 https://doi.org/10.1063/1.447604
  32. Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612 https://doi.org/10.1139/v92-085
  33. Cundari, T. R.; Stevens, W. J. J. Chem. Phys. 1993, 98, 5555 https://doi.org/10.1063/1.464902
  34. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347 https://doi.org/10.1002/jcc.540141112
  35. Musaev, D. G.; Mebel, A. M.; Morokuma, K. J. Am. Chem. Soc. 1994, 116, 10693 https://doi.org/10.1021/ja00102a039
  36. Dorigo, A. E.; von Rague-Schleyer, P. Angew. Chem., Int. Ed. Engl. 1995, 34, 115 https://doi.org/10.1002/anie.199501151
  37. Widauer, C.; Grützmacher, H.; Ziegler, T. Organometallics 2000, 19, 2097 https://doi.org/10.1021/om9909946
  38. Liu, D.; Lin, Z. Organometallics 2002, 21, 4750 https://doi.org/10.1021/om020326b
  39. Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1355 https://doi.org/10.1021/om960860h
  40. Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 742 https://doi.org/10.1021/om970277g
  41. Matsubara, T.; Maseras, F.; Koga, N.; Morokuma, K. J. Phys. Chem. 1996, 100, 2573 https://doi.org/10.1021/jp951762x
  42. Sumimoto, M.; Iwane, N.; Takahama, T.; Sakaki, S. J. Am.Chem. Soc. 2004, 126, 10457 https://doi.org/10.1021/ja040020r
  43. Lam, W. H.; Lam, K. C.; Lin, Z.; Shimada, S.; Perutz, R. N.; Marder, T. B. Dalton Trans 2004, 1556
  44. Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2003, 125, 16114 https://doi.org/10.1021/ja0302937
  45. Bennet, M. J.; Donaldson, P. Inorg. Chem. 1977, 16, 655 https://doi.org/10.1021/ic50169a033

Cited by

  1. A theoretical study on the mechanisms of intermolecular hydroacylation of aldehyde catalyzed by neutral and cationic rhodium complexes vol.57, pp.9, 2014, https://doi.org/10.1007/s11426-014-5102-2
  2. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C–H Activation Promoted by Metal–Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry vol.137, pp.19, 2015, https://doi.org/10.1021/jacs.5b01502
  3. Theoretical Investigation on Rhodium(I)-Catalyzed Cycloisomerizations of 4-Allenal Species with Linked Alkyne: Ketone vs Alcohol Products vol.34, pp.1, 2015, https://doi.org/10.1021/om501118e
  4. Formation of Iridium(III) Complexes via Selective Activation of the C-H and N-H Bonds of a Dipyridylpyrrole Ligand vol.59, pp.2, 2008, https://doi.org/10.1021/acs.inorgchem.9b02560