DOI QR코드

DOI QR Code

Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Akhtar, Kalsoom (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • 발행 : 2008.04.20

초록

Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 3,4-dintrophenyl 2-furoate (2) with a series of secondary alicyclic amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide (DMSO) at 25.0 ${^{\circ}C}$. The Bronsted-type plot exhibits a downward curvature for the aminolysis of 2, which is similar to that reported for the corresponding reactions of 2,4-dintrophenyl 2-furoate (1). Substrate 2 is less reactive than 1 toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but slightly larger $k_1$ value than that of 1. Steric hindrance has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1, since the ortho-substituent of 1 would inhibit the attack of amines (i.e., the $k_1$ process).

키워드

참고문헌

  1. Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237-270 https://doi.org/10.1016/S0065-3160(08)60312-3
  2. Kirby, A. J. In Organic Reaction Mechanisms; Knipe, A. C.; Watts, W. E., Eds.; Wiley and Sons: New York, 1980
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7
  4. Bennett, A. J.; Brown, R. S. In Physical Organic Chemistry of Acyl Transfer Reactions, Comprehensive Biological Catalysis; Academic Press: New York, 1998; vol. 1
  5. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637 https://doi.org/10.1021/ja01012a030
  6. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375 https://doi.org/10.1039/cs9811000345
  7. Williams, A. Adv. Phys. Org. Chem. 1992, 27, 2-55
  8. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829 https://doi.org/10.1021/ja00766a027
  9. Tsang, W. Y.; Ahmed, N.; Page, M. I. Org. Biomol. Chem. 2007, 5, 485-493 https://doi.org/10.1039/b616420j
  10. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  11. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  12. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536 https://doi.org/10.1021/jo050119w
  13. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685 https://doi.org/10.1021/jo047742l
  14. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 555-561 https://doi.org/10.1002/poc.1055
  15. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 129-135 https://doi.org/10.1002/poc.1007
  16. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153 https://doi.org/10.1021/jo049845+
  17. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  18. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244 https://doi.org/10.1039/b500251f
  19. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430 https://doi.org/10.1016/j.cplett.2006.11.002
  20. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  21. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674 https://doi.org/10.5012/bkcs.2007.28.10.1670
  22. Hoque, M. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797-1802 https://doi.org/10.5012/bkcs.2007.28.10.1797
  23. Kim, C. K.; Kim, D. J.; Zhang, H.; Hsieh, Y. H.; Lee, B. S.; Lee, H. W.; Kim, C. K. Bull. Korean Chem. Soc. 2007, 28, 1031-1034 https://doi.org/10.5012/bkcs.2007.28.6.1031
  24. Ehtesham, M. H. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936-940 https://doi.org/10.5012/bkcs.2007.28.6.936
  25. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  26. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197 https://doi.org/10.1021/jo061682x
  27. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803 https://doi.org/10.1021/jo0606958
  28. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  29. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985 https://doi.org/10.1039/b607194e
  30. Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803 https://doi.org/10.1021/jo701549h
  31. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  32. Um, I. H.; Akhtar, K.; Park, Y. M.; Khan, S. B. Bull. Korean Chem. Soc. 2007, 28, 1353-1357 https://doi.org/10.5012/bkcs.2007.28.8.1353
  33. Guthrie, R. D. Pure Appl. Chem. 1989, 61, 23-56 https://doi.org/10.1351/pac198961010023
  34. Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3941-3949 https://doi.org/10.1021/ja00010a040
  35. Oie, T.; Loew, G. H.; Burt, S. K.; Binkley, J. S.; Mcelroy, R. D. J. Am. Chem. Soc. 1982, 104, 6169-6174 https://doi.org/10.1021/ja00387a001
  36. Zipse, H.; Wang, L.; Houk, K. N. Liebigs Ann. 1996, 1511-1522
  37. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215-2222 https://doi.org/10.1021/jo0162742
  38. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567 https://doi.org/10.2174/1385272043370753
  39. Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H. Bull. Korean Chem. Soc. 2002, 23, 201-204 https://doi.org/10.5012/bkcs.2002.23.2.201
  40. Yang, W.; Drueckhammer, D. G. Org. Lett. 2000, 2, 4133-4136 https://doi.org/10.1021/ol006691l
  41. Ilieva, S.; Galabov, B.; Musaev, D. G.; Morokuma, K.; Schaefer, H. F. III. J. Org. Chem. 2003, 68, 1496-1502 https://doi.org/10.1021/jo0263723
  42. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  43. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970 https://doi.org/10.1021/ja00463a032
  44. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980 https://doi.org/10.1021/ja00463a033
  45. Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224 https://doi.org/10.5012/bkcs.2007.28.2.220
  46. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  47. Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829
  48. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600 https://doi.org/10.1021/jo00219a029
  49. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672 https://doi.org/10.1021/jo00360a007
  50. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457
  51. Pross, A. Advances in Physical Organic Chemistry; Academic Press: London, 1977; vol. 14, pp 69-132

피인용 문헌

  1. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1915
  2. A Mechanistic Study on Alkaline Hydrolysis of Y-Substituted Phenyl Benzenesulfonates vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2477
  3. The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2393
  4. Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. T vol.30, pp.12, 2008, https://doi.org/10.5012/bkcs.2009.30.12.2913
  5. Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives vol.31, pp.1, 2008, https://doi.org/10.5012/bkcs.2010.31.01.075
  6. Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion vol.31, pp.3, 2008, https://doi.org/10.5012/bkcs.2010.31.03.689
  7. Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism vol.31, pp.7, 2008, https://doi.org/10.5012/bkcs.2010.31.7.1915
  8. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Diphenylphosphinothioates: Steric Hindrance versus Nucleofugality in Nucleophilic Substitution Reactions vol.32, pp.6, 2008, https://doi.org/10.5012/bkcs.2011.32.6.2117