DOI QR코드

DOI QR Code

Highly CO2-soluble 5-Amido-8-hydroxyquinoline Chelating Agents for Extraction of Metals in Sc-CO2

  • Chang, Fei (Department of Chemistry and Advanced Materials and Industrial Liaison Research Institute, College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Park, Seo-Hun (Department of Chemistry and Advanced Materials and Industrial Liaison Research Institute, College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Kim, Hakwon (Department of Chemistry and Advanced Materials and Industrial Liaison Research Institute, College of Environment and Applied Chemistry, Kyung Hee University)
  • Published : 2008.07.20

Abstract

Novel $CO_2$-soluble 8-hydroxyquinoline (8-HQ) chelating agents were synthesized and evaluated for solubility and metal ion extraction ability in supercritical $CO_2\;(Sc-CO_2)$. Among them, secondary amide-containing 8- HQ derivatives cannot be dispersed well into Sc-$CO_2$, but tertiary amide-containing derivatives can dissolve completely in Sc-$CO_2$ even at low CO2 pressures, perhaps owing to the predominant intermolecular interaction between the chelating agent and the $CO_2$ molecule. Based on 8-HQ chelating agent solubility data, we investigated the extraction of metal ions ($Co^{2+}$, $Cu^{2+}$, $Sr^{2+}$, $Cd^{2+}$, and $Zn^{2+}$) using two highly $CO_2$-soluble 8-HQ derivatives (4d, 4e) in Sc-$CO_2$. The extraction efficiency of tertiary amide-containing 8-HQ ligands, both fluorinated and non-fluorinated forms, was dramatically increased in the presence of diethyl amine (organic base). We suggest that diethyl amine could play an important synergistic role in the stronger metal binding ability of 8-HQ through an in situ deprotonation reaction in Sc-$CO_2$ medium.

Keywords

References

  1. DeSimone, J. M. Science 2002, 297, 799 https://doi.org/10.1126/science.1069622
  2. Erkey, C. J. Supercrit. Fluids 2000, 17, 259 https://doi.org/10.1016/S0896-8446(99)00047-9
  3. Phelps, C. L.; Smart, N. G.; Wai, C. M. J. Chem. Educ. 1996, 73, 1163 https://doi.org/10.1021/ed073p1163
  4. Lin, Y. H.; Brauer, R. D.; Laintz, K. E.; Wai, C. M. Anal. Chem. 1993, 65, 2549 https://doi.org/10.1021/ac00066a027
  5. Tai, C. Y.; You, G.-S. AIChE 2004, 50, 1627 https://doi.org/10.1002/aic.10127
  6. Wai, C. M.; Lin, Y. H.; Brauer, R. D.; Wang, S. F.; Beckert, W. F. Talanta 1993, 40, 1325 https://doi.org/10.1016/0039-9140(93)80205-6
  7. Lin, Y. H.; Smart, N. G.; Wai, C. M. Trends Anal. Chem. 1995, 14, 123
  8. Laintz, K. E.; Wai, C. M.; Yonker, C. R.; Smith, R. D. Anal. Chem. 1992, 64, 2875 https://doi.org/10.1021/ac00046a039
  9. Wallen, S. L.; Yonker, C. R.; Phelps, C. L.; Wai, C. M. Faraday Trans. 1997, 93, 2391 https://doi.org/10.1039/a701851g
  10. Yagi, Y.; Saito, S.; Inomata, H. J. Chem. Eng. Japan 1993, 26, 116 https://doi.org/10.1252/jcej.26.116
  11. Smart, N. G.; Carleson, T. E.; Elshani, S.; Wang, S.F.; Wai, C. M. Ind. Eng. Chem. Res. 1997, 36, 1819 https://doi.org/10.1021/ie960384v
  12. Elshani, S.; Apgar, P. M.; Wang, S. F.; Wai, C. M. J. Heterocycl. Chem. 1994, 31, 1271 https://doi.org/10.1002/jhet.5570310526
  13. Galand, N.; Wipff, G. Supramol. Chem. 2005, 17, 453 https://doi.org/10.1080/10610270500163993
  14. Yazdi, A. V.; Beckman, E. J. Ind. Eng. Chem. Res. 1996, 35, 3644 https://doi.org/10.1021/ie9601211
  15. Ashbrook, A. W. Coord. Chem. Rev. 1975, 16, 285 https://doi.org/10.1016/S0010-8545(00)80438-5
  16. Wu, D.; Zhang, Q.; Bao, B. Hydrometallurgy 2007, 88, 210 https://doi.org/10.1016/j.hydromet.2007.05.009
  17. Du, S.; Zhang, G.; Cui, Z. J. Liq. Chrom. Relat. Tech. 2005, 28, 1487 https://doi.org/10.1081/JLC-200058335
  18. Cui, Z.; Zhang, G.; Song, W.; Song, Y. J. Liq. Chrom. Relat. Tech. 2004, 27, 985 https://doi.org/10.1081/JLC-120030173
  19. Shamsipur, M.; Ghiasvand, A. R.; Yamini, Y. J. Supercrit. Fluids 2001, 20, 163 https://doi.org/10.1016/S0896-8446(01)00052-3
  20. Chang, F.; Kim, H.; Joo, B.; Park, K.; Kim, H. J. Supercrit. Fluids 2008, 45, 43 https://doi.org/10.1016/j.supflu.2007.11.014
  21. Chang, F.; Kim, M.; Kwon, Y.; Kim, H. J. Ecothec. Res. 2008, 13, 295
  22. Beckman, E. Chem. Commun. 2004, 1885
  23. Wai, C. M.; Kulyako, Y.; Yak, H. K.; Chen, X.; Lee, S. J. Chem. Commun. 1999 2533
  24. Lin, Y.; Wai, C. M. Anal. Chem. 1994, 66, 1971 https://doi.org/10.1021/ac00085a008
  25. Wai, C. M.; Wang, S. J. Chromatography A 1997, 785, 396
  26. Galand, N.; Wipff, G. J. Phys. Chem. B 2005, 109, 277 https://doi.org/10.1021/jp047761z
  27. Koh, M.; Park, K.; Yang, D.; Kim, H.; Kim, H. Bull. Korean Chem. Soc. 2005, 26, 423 https://doi.org/10.5012/bkcs.2005.26.3.423
  28. Toews, K.; Scholl, R.; Wai, C. M.; Smart, N. G. Anal. Chem. 1995, 67, 4040 https://doi.org/10.1021/ac00118a002

Cited by

  1. Main chain polymeric metal complexes based on linkage fluorenevinylene or phenylenevinylene with thienyl(8-hydro xyquinoline)-cadmium (II) complexes as dye sensitizer for dye-sensitized solar cells vol.129, pp.6, 2013, https://doi.org/10.1002/app.38929
  2. A selective fluorescent sensor for Cu(II) ion in ethanol and acetone based on BODIPY vol.9, pp.1, 2018, https://doi.org/10.5155/eurjchem.9.1.63-66.1686
  3. Two main chain polymeric metal complexes as dye sensitizers for dye-sensitized solar cells based on the coordination of the ligand containing 8-hydroxyquinoline and phenylethyl or fluorene units with Eu(III) vol.48, pp.9, 2010, https://doi.org/10.1002/pola.23961
  4. Removal of Carbonate Ion through Cellulose Fiber Supported Solid Membrane vol.9, pp.2, 2008, https://doi.org/10.1177/155892501400900215