DOI QR코드

DOI QR Code

Electrochemistry and Determination of 1-Naphthylacetic Acid Using an Acetylene Black Film Modified Electrode

  • Huang, Wensheng (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities,) ;
  • Qu, Wanyun (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities,) ;
  • Zhu, Dazhai (Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Institute for Nationalities,)
  • Published : 2008.07.20

Abstract

The acetylene black (AB) was dispersed into water in the presence of dihexadecyl hydrogen phosphate (DHP) via ultrasonication, resulting in a stable and well-distributed AB/DHP suspension. After evaporation of water, an AB/DHP composite film-modified electrode was prepared. The electrochemical responses of $K_3$[Fe$(CN)_6$] at the unmodified electrode, DHP film-modified electrode and AB/DHP film-modified electrode were investigated. It is found that the AB/DHP film-modified electrode possesses larger surface area and electron transfer rate constant. Furthermore, the electrochemical behaviors of 1-naphthylacetic acid (NAA) were examined. At the AB/DHP film-modified electrode, the oxidation peak current of NAA remarkably increases. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of NAA. The linear range is in the range from $4.0 {\times} 10^{-8}\;to\;5.0 {\times} 10^{-6}$ mol $L^{-1}$, and the detection limit is $1.0 {\times} 10^{-8}$ mol $L^{-1}$. Finally, this new sensing method was employed to determine NAA in several soil samples.

Keywords

References

  1. Osaka, T.; Liu, X. J.; Nojima, M. J. Power Sources 1998, 74, 122 https://doi.org/10.1016/S0378-7753(98)00043-3
  2. Hibino, M.; Kawaoka, H.; Zhou, H. S.; Honma, I. J. Power Sources 2003, 124, 143 https://doi.org/10.1016/S0378-7753(03)00596-2
  3. Hibino, M.; Kawaoka, H.; Zhou, H. S.; Honma, I. Electrochim. Acta 2004, 49, 5209 https://doi.org/10.1016/j.electacta.2004.07.002
  4. Shin, H. C.; Cho, W.; Jang, H. Electrochim. Acta 2006, 52, 1472 https://doi.org/10.1016/j.electacta.2006.01.078
  5. Yang, X. F.; Wang, F.; Hu, S. S. Colloids and Surface B: Biointerfaces 2007, 54, 60 https://doi.org/10.1016/j.colsurfb.2006.09.003
  6. Yang, X. F.; Zhang, H. J. Food Chem. 2007, 102, 1223 https://doi.org/10.1016/j.foodchem.2006.07.010
  7. Li, G.; Ji, Z. M.; Wu, K. B. Anal. Chim. Acta 2006, 577, 178 https://doi.org/10.1016/j.aca.2006.06.061
  8. Sun, D.; Zhang, H. J. Water Research 2006, 40, 3069 https://doi.org/10.1016/j.watres.2006.06.031
  9. Zhang, H. J. Bioelectrochem. 2006, 68, 197 https://doi.org/10.1016/j.bioelechem.2005.07.001
  10. Xie, P. P.; Chen, X. X.; Hu, C. G.; Hu, S. S. Colloids and Surfaces B: Biointerfaces 2006, 48, 17 https://doi.org/10.1016/j.colsurfb.2006.01.003
  11. Sun, D.; Zhang, H. J. Anal. Chim. Acta 2006, 557, 64 https://doi.org/10.1016/j.aca.2005.10.002
  12. Navalon, A.; Blanc, R.; Vilchez, J. L. Mikrochimica Acta 1997, 126, 33 https://doi.org/10.1007/BF01242657
  13. Vilchez, J. L.; Blanc, R.; Navalon, A. Talanta 1997, 45, 105 https://doi.org/10.1016/S0039-9140(97)00116-1
  14. Pulgarin, J. A. M.; Lopez, P. F.; Bermejo, L. F. G.; Alfonso, F. M. J. Agr. Food Chem. 2003, 51, 6380 https://doi.org/10.1021/jf030357x
  15. Long, W. Q. Chinese J. of Anal. Chem. 2005, 33, 1013
  16. Nagayama, T.; Takano, I.; Kobayashi, M.; Tamura, Y.; Tomizawa, S.; Tateishi, Y.; Kimura, N.; Kitayama, K.; Saito, K. J. Food Hygienic So. Japan 2003, 44, 126 https://doi.org/10.3358/shokueishi.44.126
  17. Lu, S. F. Anal. Lett. 2003, 36, 1523 https://doi.org/10.1081/AL-120021534

Cited by

  1. Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review vol.2017, pp.1687-4129, 2017, https://doi.org/10.1155/2017/4571614
  2. Enhanced electrochemical detection of erythromycin based on acetylene black nanoparticles vol.81, pp.1, 2008, https://doi.org/10.1016/j.colsurfb.2010.06.018
  3. Determination of trace vanadium(V) by adsorptive anodic stripping voltammetry on an acetylene black paste electrode in the presence of alizarin violet vol.648, pp.2, 2008, https://doi.org/10.1016/j.jelechem.2010.08.013
  4. Acetylene black nanoparticle-modified electrode as an electrochemical sensor for rapid determination of rutin vol.171, pp.3, 2008, https://doi.org/10.1007/s00604-010-0439-5
  5. Electrocatalytic reduction and determination of p-nitrophenol on acetylene black paste electrode coated with salicylaldehyde-modified chitosan vol.168, pp.None, 2008, https://doi.org/10.1016/j.snb.2012.04.041