DOI QR코드

DOI QR Code

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A. (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Muddassar, M. (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Jung, Hwan-Won (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Yang, Beom-Seok (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Lee, Cheol-Ju (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Oh, Jung-Soo (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Cho, Seung-Joo (Computational Science Center, Future Fusion Technology Division, Korea Institute of Science and Technology) ;
  • Cho, Hoon (College of Engineering, Chosun University)
  • Published : 2008.03.20

Abstract

Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.

Keywords

References

  1. Gilmour, R. S.; Mitchell, M. D. Exp. Biol. Med. (Maywood) 2001, 226, 1-4 https://doi.org/10.1177/153537020122600101
  2. Murakami, M.; Kudo, I. Progress in Lipid Research 2004, 43, 3-35 https://doi.org/10.1016/S0163-7827(03)00037-7
  3. Thoren, S.; Jakobsson, P. J. Eur. J. Biochem. 2000, 267, 6428-6434 https://doi.org/10.1046/j.1432-1327.2000.01735.x
  4. Quraishi, O.; Mancini, J. A.; Riendeau, D. Biochem Pharmacol 2002, 63, 1183-9 https://doi.org/10.1016/S0006-2952(02)00844-4
  5. Riendeau, D.; Aspiotis, R.; Ethier, D.; Gareau, Y.; Grimm, E. L.; Guay, J.; Guiral, S.; Juteau, H.; Mancini, J. A.; Methot, N.; Rubin, J.; Friesen, R. W. Bioorg. Med. Chem. Lett. 2005, 15, 3352-3355 https://doi.org/10.1016/j.bmcl.2005.05.027
  6. Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2007, 28, 200-206 https://doi.org/10.5012/bkcs.2007.28.2.200
  7. Lee, Y.; Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2007, 28, 561-566 https://doi.org/10.5012/bkcs.2007.28.4.561
  8. Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K. Journal of Physical Chemistry A 2007, 111, 1358-1361 https://doi.org/10.1021/jp0649549
  9. Chattaraj, P. K.; Roy, D. R.; Elango, M.; Subramanian, V. J. of Molecular Structure-Theochem 2006, 759, 109-110 https://doi.org/10.1016/j.theochem.2005.10.041
  10. Pasha, F. A.; Chung, H. W.; Cho, S. J.; Kang, S. B. International Journal of Quantum Chemistry 2008, 108, 391-400 https://doi.org/10.1002/qua.21474
  11. Pasha, F. A.; Nam, K. D.; Cho, S. J. Mollecular and Cellular Toxicology 2007, 3, 145-149
  12. Kim, J.; Han, J. H.; Chong, Y. Bull. Korean Chem. Soc. 2006, 27, 1919-1922 https://doi.org/10.5012/bkcs.2006.27.11.1919
  13. Kim, M. K.; Choo, I. H.; Lee, H. S.; Woo, J. I.; Chong, Y. Bull. Korean Chem. Soc. 2007, 28, 1231-1234 https://doi.org/10.5012/bkcs.2007.28.7.1231
  14. Lee, D. Y.; Hyun, K. H.; Park, H. Y.; Lee, K. A.; Lee, B. S.; Kim, C. K. Bull. Korean Chem. Soc. 2006, 27, 273-276 https://doi.org/10.5012/bkcs.2006.27.2.273
  15. Myung, P. K.; Park, K. Y.; Sung, N. D. Bull. Korean Chem. Soc. 2005, 26, 1941-1945 https://doi.org/10.5012/bkcs.2005.26.12.1941
  16. San Juan, A. A.; Cho, S. J. Bull. Korean Chem. Soc. 2005, 26, 952-958 https://doi.org/10.5012/bkcs.2005.26.6.952
  17. Sung, N. D.; Jang, S. C.; Choi, K. S. Bull. Korean Chem. Soc. 2006, 27, 1741-1746 https://doi.org/10.5012/bkcs.2006.27.11.1741
  18. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959-5967 https://doi.org/10.1021/ja00226a005
  19. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130-4146 https://doi.org/10.1021/jm00050a010
  20. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130-4146 https://doi.org/10.1021/jm00050a010
  21. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. Journal of Chemical Physics 1978, 68, 3801-3807 https://doi.org/10.1063/1.436185
  22. Parr, R. G.; Von Szentpaly, L.; Liu, S. B. J. Am. Chem. Soc. 1999, 121, 1922-1924 https://doi.org/10.1021/ja983494x
  23. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. Journal of Chemical Physics 1954, 22, 1433-1442 https://doi.org/10.1063/1.1740412
  24. Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. Journal of Chemical Information and Computer Sciences 1989, 29, 163-172
  25. Ghose, A. K.; Pritchett, A.; Crippen, G. M. Journal of Computational Chemistry 1988, 9, 80-90 https://doi.org/10.1002/jcc.540090111
  26. Klamt, A.; Schuurmann, G. Journal of the Chemical Society-Perkin Transactions 2 1993, 799-805
  27. Koopmans, T. C. Physica 1934, 1, 104-113 https://doi.org/10.1016/S0031-8914(34)90011-2
  28. Phase, version 8.0: Schroedinger Inc.: Portland, USA, 2007
  29. Kim, K. H.; Greco, G.; Novellino, E. Perspectives in Drug Discovery and Design 1998, 12, 257-315
  30. SYBYL 7.3; Tripos Inc.: St. Louis, USA, 2007
  31. Wold, S.; Ruhe, A.; Wold, H.; Dunn, W. J. Siam Journal on Scientific and Statistical Computing 1984, 5, 735-743 https://doi.org/10.1137/0905052
  32. Geladi, P.; Xie, Y. L.; Polissar, A.; Hopke, P. Journal of Chemometrics 1998, 2, 231 https://doi.org/10.1002/cem.1180020403
  33. Rouzer, C. A.; Ford-Hutchinson, A. W.; Morton, H. E.; Gillard, J. W. J. Biol. Chem. 1990, 265, 1436-1442
  34. Gupta, N.; Nicholson, D. W.; Ford-Hutchinson, A. W. Can. J. Physiol. Pharmacol. 1997, 75, 1212-1219 https://doi.org/10.1139/cjpp-75-10-11-1212
  35. Vickers, P. J.; Adam, M.; Charleson, S.; Coppolino, M. G.; Evans, J. F.; Mancini, J. A. Mol. Pharmacol. 1992, 42, 94-102
  36. Mancini, J. A.; Coppolino, M. G.; Klassen, J. H.; Charleson, S.; Vickers, P. J. Life Sci. 1994, 54, PL137-142
  37. Mancini, J. A.; Waterman, H.; Riendeau, D. J. Biol. Chem. 1998, 273, 32842-32847 https://doi.org/10.1074/jbc.273.49.32842
  38. San Juan, A. A.; Cho, S. J. J. Mol. Model 2007, 13, 601-610 https://doi.org/10.1007/s00894-007-0172-0

Cited by

  1. Classical and 3D QSAR studies on inverse agonists of human histamine H1 receptor vol.38, pp.13, 2012, https://doi.org/10.1080/08927022.2012.696638
  2. Quantum Mechanics-Based Properties for 3D-QSAR vol.53, pp.6, 2013, https://doi.org/10.1021/ci400181b
  3. Induced fit docking, pharmacophore modeling, and molecular dynamic simulations on thiazolidinedione derivatives to explore key interactions with Tyr48 in polyol pathway vol.20, pp.7, 2014, https://doi.org/10.1007/s00894-014-2348-8
  4. Inhibition of microsomal prostaglandin E synthase-1 by phenanthrene imidazoles: a QSAR study vol.24, pp.5, 2015, https://doi.org/10.1007/s00044-014-1290-8
  5. Pharmacophore Identification and Validation Study of CK2 Inhibitors Using CoMFA/CoMSIA vol.74, pp.2, 2009, https://doi.org/10.1111/j.1747-0285.2009.00841.x
  6. Docking and Quantum Mechanics-Guided CoMFA Analysis of b-RAF Inhibitors vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1499
  7. Structure-Based Discovery of Inhibitors of Microsomal Prostaglandin E2 Synthase−1, 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein: Promising Hits for the Development of New Anti vol.54, pp.6, 2011, https://doi.org/10.1021/jm101238d