DOI QR코드

DOI QR Code

Crystal Structure of Ferrihydrite Nanoparticles Synthesized in Ferritin

  • Kim, Sung-Won (Research Institute of Advanced Engineering and Technology, Chosun University) ;
  • Seo, Hyang-Yim (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Lee, Young-Boo (Korea Basic Science Institute) ;
  • Park, Young-Seog (Department of Resources Engineering, Chosun University) ;
  • Kim, Kyung-Suk (Faculty of Biological Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Published : 2008.10.20

Abstract

In this study, horse spleen apoferritins were induced to form biominerals using up to 3000 Fe atoms per protein molecule. The morphology and crystallinity of the nanometer-sized biominerals formed in the ferritins were then analyzed using field emission-energy filtering-transmission electron microscopy (FE-TEM). The ferritins were found to have reconstitution yields of 60-70% in the experiments. The mean core size of the ferritins varied somewhat with protein concentrations, indicating that crystal growth in ferritins could be controlled via protein concentrations. The core mineral size increased with the amount of Fe used. Lattice fringes of the core, associated with good crystallinity, were found in all samples. The lattice fringe images of a single domain ferrihydrite mineral appeared frequently in the (011) planes (d-spacing of 0.246 nm) under [100] zone axis in all samples of this study. In addition, the lattice image occasionally revealed fringes corresponding to the (100) planes (d = 0.254 nm) from the [001] zone axis, indicating the characteristic pattern of hexagonal crystal lattice. Diffraction patterns in the minerals identified as ferrihydrite were fitted well into the space group of $P3_{1c}$.

Keywords

References

  1. Williams, R. J. P. In Biomineralization: Chemical and Biochemical Perspectives; Mann, S.; Webb, J.; Williams, R. J. P., Eds.; VCH: Weinheim, Germany, 1989; p 1
  2. Gue, X.; He, B.; Sun, C.; Zhao, Y.; Huang, T.; Liew, K.; Liu, H Bull. Korean Chem. Soc. 2007, 28, 1746 https://doi.org/10.5012/bkcs.2007.28.10.1746
  3. Meldrum, F. C.; Heywood, B. R.; Mann, S. Science 1992, 257, 522 https://doi.org/10.1126/science.1636086
  4. Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.; Mann, S. Nature 1991, 349, 684 https://doi.org/10.1038/349684a0
  5. Douglas, T.; Stark, V. T. Inorg. Chem. 2000, 39, 1828 https://doi.org/10.1021/ic991269q
  6. Kim, J. W.; Choi, S. H.; Lillehei, P. T.; Chu, S.-H.; King, G. C.; Watt, G. D. Chem. Commun. 2005, 2, 4101
  7. Kim, S.-W.; Jo, M.-Y.; Yokoda, Y.; Chung, Y.-J.; Park, C.-U.; Kim, K.-S. Bull. Korean Chem. Soc. 2004, 25, 237 https://doi.org/10.5012/bkcs.2004.25.2.237
  8. Chasteen, N. D.; Harrison, P. M. J. Struc. Biol. 1999, 126, 182 https://doi.org/10.1006/jsbi.1999.4118
  9. Harrison, P. M.; Arosio, P. Biochim. Biophys. Acta 1996, 1275, 161 https://doi.org/10.1016/0005-2728(96)00022-9
  10. Eggleton, R. A.; Fitzpatrick, R. W. Clays Clay Miner. 1988, 36, 111 https://doi.org/10.1346/CCMN.1988.0360203
  11. Towe, K. M.; Bradley, W. F. J. Colloid Interface Sci. 1967, 24, 384 https://doi.org/10.1016/0021-9797(67)90266-4
  12. Michel, F. M.; Ehm, L.; Antao, S. M.; Lee, P. L.; Chupas, P. J.; Liu, G.; Strongin, D. R.; Schoonen, M. A. A.; Phillips, B. L.; Parise, J. B. Science 2007, 316, 1726 https://doi.org/10.1126/science.1142525
  13. Cowley, J. M.; Janney, D. E.; Gerkin, R. C.; Buseck, P. R. J. Struct. Biol. 2000, 131, 210 https://doi.org/10.1006/jsbi.2000.4292
  14. Silva, N. J. O.; Amaral, V. S.; Carlos, L. D.; Rodriguez-Gonzalez, B.; Liz-Marzan, L. M.; Millan, A.; Palacio, F.; Bermudez, V. Z. J. Appl. Physics 2006, 100, 54301/1
  15. Kim, K.-S.; Mun, H.-R.; Lee, J.-H. Inorg. Chim. Acta 2000, 298, 107 https://doi.org/10.1016/S0020-1693(99)00423-5
  16. Hess, H. H.; Lees, M. B.; Derr, J. E. Anal. Biochem. 1978, 85, 295 https://doi.org/10.1016/0003-2697(78)90304-4
  17. Wade, V. J.; Levi, S.; Arosio, P.; Treffry, A.; Harrison, P. M.; Mann, S. J. Mol. Biol. 1991, 221, 1443 https://doi.org/10.1016/0022-2836(91)90944-2
  18. Kim, K.-S.; Jeon, E.-S.; Mun, H.-R.; Park, C.-U. Korean J. Biotechnol. Bioeng. 1997, 12, 184
  19. Yang, X.; Chen-Barrett, Y.; Arosio, P.; Chasteen, N. D. Biochemistry 1998, 37, 9743 https://doi.org/10.1021/bi973128a
  20. Meldrum, F. C.; Douglas, T.; Levis, S.; Arosio, P.; Mann, S. J. Inorg. Biochem. 1995, 58, 59 https://doi.org/10.1016/0162-0134(94)00037-B
  21. St. Pierre, T. G.; Webb, J.; Mann, S. In Biomineralization: Chemical and Biochemical Perspectives; Mann, S.; Webb, J.; Williams, R. J. P., Eds.; VCH: Weinheim, Germany, 1989; p 295
  22. Janney, D. E.; Cowley, J. M.; Buseck, P. R. Clays Clay Miner. 2000, 48, 111 https://doi.org/10.1346/CCMN.2000.0480114

Cited by

  1. Study of Inorganic Particles, Fibers, and Asbestos Bodies by Variable Pressure Scanning Electron Microscopy with Annexed Energy Dispersive Spectroscopy and Micro-Raman Spectroscopy in Thin Sections of Lung and Pleural Plaque vol.64, pp.6, 2010, https://doi.org/10.1366/000370210791414380
  2. Biocompatible Nanomembranes Based on PEGylation of Cross-Linked Self-Assembled Monolayers vol.24, pp.15, 2012, https://doi.org/10.1021/cm3011875
  3. Structural investigations on differently sized monodisperse iron oxide nanoparticles synthesized by remineralization of apoferritin molecules vol.15, pp.8, 2013, https://doi.org/10.1007/s11051-013-1821-0
  4. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138240
  5. Reactivity of ferrihydrite and ferritin in relation to surface structure, size, and nanoparticle formation studied for phosphate and arsenate vol.3, pp.6, 2016, https://doi.org/10.1039/C6EN00061D
  6. Controlling the Number of Proteins with Dip-Pen Nanolithography vol.22, pp.3, 2010, https://doi.org/10.1002/adma.200902372
  7. 효모에서 생산한 재조합 human L-ferritin의 생화학적 특성 및 나노입자의 철산화물 합성 vol.26, pp.2, 2011, https://doi.org/10.7841/ksbbj.2011.26.2.119
  8. Selective covalent immobilization of ferritin on alumina. vol.9, pp.3, 2008, https://doi.org/10.1116/1.4895688
  9. Incorporation of Graphene Quantum Dots, Iron, and Doxorubicin in/on Ferritin Nanocages for Bimodal Imaging and Drug Delivery vol.3, pp.3, 2020, https://doi.org/10.1002/adtp.201900183
  10. Asbestos Fibers and Ferruginous Bodies Detected by VP-SEM/EDS in Colon Tissues of a Patient Affected by Colon-Rectum Cancer: A Case Study vol.11, pp.6, 2008, https://doi.org/10.3390/min11060658