DOI QR코드

DOI QR Code

Eigenenergies of 3D-Coulomb and 3D-Harmonic Oscillator Potentials from WKB Quantization: Point Canonical Transformation

  • Sun, Ho-Sung (Department of Chemistry, Sungkyunkwan University)
  • Published : 2008.01.20

Abstract

A direct application of the WKB quantization to the three-dimensional Coulomb potential does not yield the exact eigenenergies. The three-dimensional Coulomb potential is converted to a Morse potential by using the point canonical transformation. Then the WKB quantization is applied to the Morse potential to find a relationship between the eigenenergies of the Coulomb and those of the Morse potentials. From the relationship the exact eigenenergis of the Coulomb potential are determined. The same method is found to be also valid for the three-dimensional harmonic oscillator potential. And the Langer modified WKB quantization is algebraically derived.

Keywords

References

  1. Froman, N.; Fröman, P. O. JWKB Approximation; North Holland: Amsterdam, 1965
  2. Friedrich, H.; Trost, J. Phys. Rep. 2004, 397, 359 https://doi.org/10.1016/j.physrep.2004.04.001
  3. Ivanov, I. A. J. Phys. A: Math. Gen. 1997, 30, 3977 https://doi.org/10.1088/0305-4470/30/11/024
  4. Hruska, M.; Keung, W.-Y.; Sukhatme, U. Phys. Rev. A 1997, 55, 3345 https://doi.org/10.1103/PhysRevA.55.3345
  5. Gangopadhyaya, A.; Panigrahi, P. K.; Sukhatme, U. P. Helv. Phys. Acta 1994, 67, 363
  6. Cooper, F.; Khare, A.; Sukhatme, U. P. Phys. Rep. 1995, 251, 267 https://doi.org/10.1016/0370-1573(94)00080-M
  7. Langer, R. E. Phys. Rev. 1937, 51, 669 https://doi.org/10.1103/PhysRev.51.669
  8. Krieger, J. B.; Rosenzweig, C. Phys. Rev. 1967, 164, 171 https://doi.org/10.1103/PhysRev.164.171
  9. Sergeenko, M. N. Phys. Rev. A 1996, 53, 3798 https://doi.org/10.1103/PhysRevA.53.3798
  10. Haymaker, R. W.; Rau, A. R. P. Am. J. Phys. 1986, 54, 928 https://doi.org/10.1119/1.14794
  11. Bruev, A. S. Phys. Lett. A 1992, 161, 407 https://doi.org/10.1016/0375-9601(92)90678-F
  12. Ou, Y.; Cao, Z.; Shen, Q. Phys. Lett. A 2003, 318, 36 https://doi.org/10.1016/j.physleta.2003.09.026
  13. Sun, H. Bull. Korean Chem. Soc. 2006, 27, 515 https://doi.org/10.5012/bkcs.2006.27.4.515
  14. Friedrich, H.; Trost, J. Phys. Rev. A 1996, 54, 1136 https://doi.org/10.1103/PhysRevA.54.1136
  15. Ou, Y. C.; Cao, Z.; Shen, Q. J. Chem. Phys. 2004, 121, 8175 https://doi.org/10.1063/1.1799015
  16. Sun, H. Phys. Lett. A 2005, 338, 309 https://doi.org/10.1016/j.physleta.2005.02.054
  17. Sun, H. Bull. Korean Chem. Soc. 2007, 28, 408 https://doi.org/10.5012/bkcs.2007.28.3.408

Cited by

  1. From the generalized Morse potential to a unified treatment of the D-dimensional singular harmonic oscillator and singular Coulomb potentials vol.54, pp.9, 2016, https://doi.org/10.1007/s10910-016-0635-6
  2. On the Size of Quantum Dots with Bound Hydrogenic Impurity States vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.315