DOI QR코드

DOI QR Code

Observations Made in Exploring a Pyridinium Salt Photochemical Approach to the Synthesis of (+)-Lactacystin

  • Zhou, Jiwen (Department of Chemistry and Chemical Biology, University of New Mexico) ;
  • Gong, Maozhen (Department of Chemistry and Chemical Biology, University of New Mexico) ;
  • Mariano, Patrick S. (Department of Chemistry and Chemical Biology, University of New Mexico) ;
  • Yoon, Ung-Chan (Department of Chemistry, College of Natural Sciences, Pusan National University)
  • Published : 2008.01.20

Abstract

The key step in a strategy for the synthesis of (+)-lactacystin involving photocyclization reaction of a cyclopenta-fused pyridinium salt has been probed by using a model substrate. Observations made in this effort led to the discovery of a highly unusual cascade process that leads to stereoselective formation of an interesting tricyclic carbamate. The results of this study are presented and discussed in the context of a (+)-lactacystin synthetic approach.

Keywords

References

  1. Ling, R.; Yoshida, M.; Mariano, P. S. J. Org. Chem. 1996, 61, 4439 https://doi.org/10.1021/jo960316i
  2. Mariano, P. S. A New Look at Pyridinium Salt Photochemistry in Handbook of Organic Photochemistry and Photobiology; Horspool, W., Ed.; CRC Press: 2003
  3. Yoon, U. C.; Mariano, P. S. Bull. Korean Chem. Soc. 2006, 27, 1099 https://doi.org/10.5012/bkcs.2006.27.8.1099
  4. Kaplan, L.; Pavlik, J. W.; Wilzbach, K. E. J. Am. Chem. Soc. 1972, 94, 3283 https://doi.org/10.1021/ja00764a089
  5. Yoon, U. C.; Quillen, S. L.; Mariano, P. S.; Swanson, R.; Stavinoha, J. L.; Bay, E. J. Am. Chem. Soc. 1983, 105, 1204 https://doi.org/10.1021/ja00343a022
  6. Ling, R.; Mariano, P. S. J. Org. Chem. 1998, 63, 6072 https://doi.org/10.1021/jo980855i
  7. Cho, S. J.; Ling, R.; Kim, A.; Mariano, P. S. J. Org. Chem. 2000, 65, 1574 https://doi.org/10.1021/jo991539m
  8. Lu, H.; Mariano, P. S.; Lam, Y.-F. Tetrahedron Lett. 2001, 42, 4755 https://doi.org/10.1016/S0040-4039(01)00858-9
  9. Feng, X.; Duesler, E. N.; Mariano, P. S. J. Org. Chem. 2005, 70, 5618 https://doi.org/10.1021/jo050589q
  10. Lu, H.; Su, Z.; Song, L.; Mariano, P. S. J. Org. Chem. 2002, 67, 3525 https://doi.org/10.1021/jo020038p
  11. Song, L.; Duesler, E. N.; Mariano, P. S. J. Org. Chem. 2004, 69, 7284 https://doi.org/10.1021/jo040226a
  12. Zhao, Z.; Song, L.; Mariano, P. S. Tetrahedron 2005, 61, 8888 https://doi.org/10.1016/j.tet.2005.07.014
  13. Zhao, Z.; Duesler, E.; Wang, C.; Guo, H.; Mariano, P. S. J. Org. Chem. 2005, 70, 8508 https://doi.org/10.1021/jo051348l
  14. Omura, S.; Fujimoto, T.; Otogura, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y J. Antibiot. 1991, 44, 113 https://doi.org/10.7164/antibiotics.44.113
  15. Omura, S.; Fujimoto, T.; Otogura, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 117 https://doi.org/10.7164/antibiotics.44.117
  16. Dick, L. R.; Cruikshank, A. A.; Grenier, L.; Melandri, F. D.; Nunes, S. L.; Stein, R. L. J. Biol. Chem. 1996, 271, 7273 https://doi.org/10.1074/jbc.271.13.7273
  17. Adams, J.; Stein, R. Ann. Rep. Med. Chem. 1996, 31, 279 https://doi.org/10.1016/S0065-7743(08)60467-4
  18. Donohoe, T. J.; Sintim, H. O.; Sisangia, L.; Harling, J. D. Angew. Chem. Int Ed. 2004, 43, 2293 https://doi.org/10.1002/anie.200453843
  19. Brennan, C. J.; Pattenden, G.; Rescourio, G. Tetrahedron Lett. 2003, 44, 8757 https://doi.org/10.1016/j.tetlet.2003.10.022
  20. Page, P. C.; Leach, D. C.; Hayman, C. M.; Hamzah, A. S.; Allin, S. M.; McKee, V. Synlett 2003, 1025
  21. Green, M. P.; Prodger, J. C.; Hayes, C. J. Tetrahedron Lett. 2002, 43, 6609 https://doi.org/10.1016/S0040-4039(02)01459-4
  22. Iwama, S.; Gao, W.-G.; Shinada, T.; Ohfune, Y. Synlett 2000, 1631
  23. Panek, J. S.; Masse, C. E. Angew. Chem. Int. Ed. 1999, 38, 1093 https://doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1093::AID-ANIE1093>3.0.CO;2-U
  24. Corey, E. J.; Reichard, G. A. J. Am. Chem. Soc. 1992, 114, 10677 https://doi.org/10.1021/ja00052a096
  25. Corey, E. J.; Reichard, G. A.; Kania, R. Tetrahedron Lett. 1993, 44, 6977
  26. Sunazuka, T.; Nagamitsu, T.; Matsuzaki, K.; Tanaka, H.; Omura, S.; Smith, A. B. J. Am. Chem. Soc. 1993, 115, 5302 https://doi.org/10.1021/ja00065a054
  27. Corey, E. J.; Kim, C. U.; Takeda, M. Tetrahedron Lett. 1972, 13, 4339 https://doi.org/10.1016/S0040-4039(01)94310-2

Cited by

  1. Microwave synthesis of bis(cycloalkeno)-1,4-diselenins: a novel source of Se for CdSe QDs vol.41, pp.15, 2017, https://doi.org/10.1039/C7NJ00793K
  2. 1,2,3-Selenadiazole-driven single family MSNCs of CdSe vol.41, pp.23, 2017, https://doi.org/10.1039/C7NJ02994B
  3. ChemInform Abstract: Observations Made in Exploring a Pyridinium Salt Photochemical Approach to the Synthesis of (+)-Lactacystin. vol.39, pp.23, 2008, https://doi.org/10.1002/chin.200823188
  4. Impact of microwave irradiation on cyclo-octeno-1,2,3-selenadiazole: formation of selenium nanoparticles and their polymorphs vol.5, pp.56, 2008, https://doi.org/10.1039/c5ra05701a
  5. Photochemical Rearrangements in Heterocyclic Chemistry vol.2020, pp.10, 2008, https://doi.org/10.1002/ejoc.201901190
  6. On the photochemical reaction of pyridinium salts with nucleophiles vol.20, pp.7, 2021, https://doi.org/10.1007/s43630-021-00070-6