DOI QR코드

DOI QR Code

Gd-Complexes of DTPA-bis(amides) Functionalized by Pyridine and Picolinamide: Synthesis, Thermodynamic Stability, and Relaxivity Properties

  • Sk, Nasiruzzaman (Department of Applied Chemistry, Kyungpook National University) ;
  • Park, Ji-Ae (Department of Diagonistic Radiology, and Department of Molecular Medicine, Kyungpook National University) ;
  • Chang, Yong-Min (Department of Diagonistic Radiology, and Department of Molecular Medicine, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2008.06.20

Abstract

A series of DTPA-bis(amides) functionalized by pyridine (1a-c) and N-phenylpicolinamide) (1d-e) and their Gd(III)-complexes of the type [Gd(1)($H_2O$)]·x$H_2O$ (2a-e) were prepared and characterized by analytical and spectroscopic techniques. Potentiality of 2a-e as contrast agents for magnetic resonance imaging (MRI CA) was investigated by measuring relevant physicochemical properties and relaxivities and compared with [Gd(DTPA-BMA)($H_2O$)] (DTPA-BMA=N,N''-di(methylcarbamoylmethyl)diethylenetriamine-N,N',N''-triacetate) ($Omniscan^{(R)}$). The R1 relaxivities of aqueous solutions of 2a-c are in the range of 3.33 -5.02 $mM^{-1}$$sec^{-1}$, which are comparable with those of $Omniscan^{(R)}$ (r1=4.58 $mM^{-1}sec^{-1}$). Complexes 2d-e, insoluble in water, exhibit relatively higher R1 values (8.1- 8.3 $mM^{-1}sec^{-1}$) in HP-$\beta$-CD solutions.

Keywords

References

  1. Caravan, P. Chem. Soc. Rev. 2006, 35, 512 https://doi.org/10.1039/b510982p
  2. Raymond, K. N.; Pierre, V. C. Bioconjugate Chem. 2005, 16, 3 https://doi.org/10.1021/bc049817y
  3. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; Toth, E.; Merbach, A. E., Eds.; Wiley: Chichester, 2001
  4. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293 https://doi.org/10.1021/cr980440x
  5. Bligh, S. W. A.; Chowdhury, A. H. M. S.; McPartlin, M.; Scowen, I. J.; Bulman, R. A. Polyhedron 1995, 14, 567 https://doi.org/10.1016/0277-5387(94)00318-9
  6. Lammers, H.; Maton, F.; Pubanz, D.; Van Laren, M. W.; Van Bekkum, H.; Merbach, A. E.; Muller, R. N.; Peters, J. A. Inorg. Chem. 1997, 36, 2527 https://doi.org/10.1021/ic961359k
  7. Aime, S.; Benetollo, F.; Bombieri, G.; Colla, S.; Fasano, M.; Paoletti, S. Inorg. Chim. Acta 1997, 254, 63 https://doi.org/10.1016/S0020-1693(96)05139-0
  8. Zhao, X.; Zhuo, R.; Lu, Z.; Liu, W. Polyhedron 1997, 16, 2755 https://doi.org/10.1016/S0277-5387(97)00029-6
  9. Lammers, H.; van der Heijden, A. M.; van Bekkum, H.; Geraldes, C. F. G. C.; Peters, J. A. Inorg. Chim. Acta 1998, 268, 249 https://doi.org/10.1016/S0020-1693(97)05752-6
  10. Bligh, S. W. A.; Chowdhury, A. H. M. S.; Kennedy, D.; Luchinat, C.; Parigi, G. Reson. Med. 1999, 41, 767 https://doi.org/10.1002/(SICI)1522-2594(199904)41:4<767::AID-MRM16>3.0.CO;2-G
  11. Wang, Y.-M.; Wang, Y.-J.; Sheu, R.-S.; Liu, G.-C.; Liu, W.-C.; Liao, J.-H. Polyhedron 1999, 18, 1147 https://doi.org/10.1016/S0277-5387(98)00406-9
  12. Geraldes, C. F. G. C.; Urbano, A. M.; Alpoim, M. C.; Sherry, A. D.; Kuan, K.-T.; Rajagopalan, R.; Maton, F.; Muller, R. N. Mag. Reson. Imag. 1995, 13, 401 https://doi.org/10.1016/0730-725X(94)00117-L
  13. Dutta, S.; Kim, S.-K.; Patel, D. B.; Kim, T.-J.; Chang, Y. Polyhedron 2007, 26, 3799 https://doi.org/10.1016/j.poly.2007.04.027
  14. Eckelman, W. C.; Karesh, S. M.; Reba, R. C. J. Pharm. Sci. 1975, 64, 704 https://doi.org/10.1002/jps.2600640433
  15. Dutta, S.; Kim, S.-K.; Lee, E. J.; Kim, T.-J.; Kang, D.-S.; Chang, Y.; Kang, S. O.; Han, W.-S. Bull. Korean Chem. Soc. 2006, 27, 1038 https://doi.org/10.5012/bkcs.2006.27.7.1038
  16. Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739 https://doi.org/10.1016/0039-9140(96)01958-3
  17. Cacheris, W. P.; Quay, S. C.; Rocklage, S. M. Magn. Reson. Imag. 1990, 8, 467 https://doi.org/10.1016/0730-725X(90)90055-7
  18. Harris, W. R.; Martell, A. E. Inorg. Chem. 1976, 15, 713 https://doi.org/10.1021/ic50157a044
  19. Li, Y.; Martell, A. E.; Hancock, R. D.; Reibenspies, J. H.; Anderson, C. J.; Welch, M. J. Inorg. Chem. 1996, 35, 404 https://doi.org/10.1021/ic941330l
  20. Taliaferro, C. H.; Motekaitis, R. J.; Martell, A. E. Inorg. Chem. 1984, 23, 1188 https://doi.org/10.1021/ic00177a004
  21. Kumar, K.; Tweedle, M. F.; Malley, M. F.; Gougoutas, J. Z. Inorg. Chem. 1995, 34, 6472 https://doi.org/10.1021/ic00130a012
  22. Laus, S.; Ruloff, R.; Tóth, E.; Merbach, A. E. Chem. Eur. J. 2003, 9, 3555 https://doi.org/10.1002/chem.200204612
  23. Bannochie, C. J.; Martell, A. E. Inorg. Chem. 1991, 30, 1385 https://doi.org/10.1021/ic00006a041
  24. Tweedle, M. F.; Hahan, J. J.; Kumar, K.; Mantha, S.; Chang, C. A. Magn. Reson. Imaging 1991, 9, 409 https://doi.org/10.1016/0730-725X(91)90429-P
  25. Martell, A. E.; Smith, R. M. Critical Stability Constants; Plenum: New York, 1974; vol. 1

Cited by

  1. Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR vol.30, pp.4, 2008, https://doi.org/10.5012/bkcs.2009.30.4.849