• Title/Summary/Keyword: T1 relaxivity

Search Result 11, Processing Time 0.026 seconds

The Effects of Rotational Correlation Time of Paramagnetic Contrast Agents on Relaxation Enhancement: Partial Binding to Macromolecules (거대분자에 부분적으로 결합한 상자성 자기공명 조영제의 회전속도가 이완증강에 미치는 영향)

  • 장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • Purpose : To evaluate the effect of rotational correlation time (${\tau}_R$) and the possible related changes of other parameters, ${\tau}_M,{\;}{\tau}_S,{\;}and{\;}(\tau}_V$ of gadolinium (Gd) chelate on T1 relaxation enhancement in two pool model. Materials and Methods : The NMRD (Nuclear Magnetic Relaxation Dispersion) profiles were simulated from 0.02 MHz to 800 MHz proton Larmor frequency for different values of rotational correlation times based on Solomon-Bloembergen equation for inner-sphere relaxation enhancement. To include both unbound pool (pool A) and bound pool (pool B), the relaxivity was divided by contribution from unbound pool and bound pool. The rotational correlation time for pool A was fixed at the value of 0.1 ns, which is a typical value for low molecular weight complexes such as Gd-DTPA in solution and ${\tau}_R$ for pool B was changed from 0.1 ns to 20 ns to allow the slower rotation by binding to macromolecule. The fractional factor of was also adjusted from 0 to 1.0 to simulate different binding ratios to macromolecule. Since the binding of Gd-chelate to macromolecule cab alter the electronic environment of Gd ion and also the degree of bulk water access to hydration site of Gd-chelate, the effects of these parameters were also included. Results : The result shows that low field profiles, ranged from 0.02 to 40 MHz, and dominated by contribution from bound pool, which is bound to macromolecule regardless of binding ratios. In addition, as more Gd-chelate bound to macromolecule, sharp increase of relaxivity at higher field occurs. The NMRD profiles for different values of ${\tau}_S$ show the enormous increase of low field profile whereas relaxivity at high field is not affected by ${\tau}_S$. On the other hand, the change in ${\tau}$V does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity value. The results shows a parabolic dependence of relaxivity on ${\tau}_M$. Conclusion : Binding of Gd-chelate to a macromolecule causes slower rotational tumbling of Gd-chelate and would result in relaxation enhancement, especially in clinical imaging field. However, binding to macromolecule can change water enchange rate (${\tau}_M$) and electronic relaxation ($T_le$) vis structural deformation of electron environment and the access of bulk water to hydration site of metal-chelate. The clinical utilities of Gd-chelate bound to macromolecule are the less dose requirement, the tissue specificity, and the better perfusion and intravascular agents.

  • PDF

Gd-Complexes of DTPA-bis(amides) Functionalized by Pyridine and Picolinamide: Synthesis, Thermodynamic Stability, and Relaxivity Properties

  • Sk, Nasiruzzaman;Park, Ji-Ae;Chang, Yong-Min;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1211-1216
    • /
    • 2008
  • A series of DTPA-bis(amides) functionalized by pyridine (1a-c) and N-phenylpicolinamide) (1d-e) and their Gd(III)-complexes of the type [Gd(1)($H_2O$)]·x$H_2O$ (2a-e) were prepared and characterized by analytical and spectroscopic techniques. Potentiality of 2a-e as contrast agents for magnetic resonance imaging (MRI CA) was investigated by measuring relevant physicochemical properties and relaxivities and compared with [Gd(DTPA-BMA)($H_2O$)] (DTPA-BMA=N,N''-di(methylcarbamoylmethyl)diethylenetriamine-N,N',N''-triacetate) ($Omniscan^{(R)}$). The R1 relaxivities of aqueous solutions of 2a-c are in the range of 3.33 -5.02 $mM^{-1}$$sec^{-1}$, which are comparable with those of $Omniscan^{(R)}$ (r1=4.58 $mM^{-1}sec^{-1}$). Complexes 2d-e, insoluble in water, exhibit relatively higher R1 values (8.1- 8.3 $mM^{-1}sec^{-1}$) in HP-$\beta$-CD solutions.

Evaluation of Reproducibility According to Variation of Coil Channel in Quantitative Evaluation Using Synthetic MR (Synthetic MR을 이용한 정량적 평가에서 Coil channel 수 변화에 따른 재현성 평가)

  • Kwon, Soon-Yong;Kim, Seong-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.343-351
    • /
    • 2017
  • T1, T2 relaxation time and relaxation rates were measured and analyzed according to the change of RF coil channel number of MAGiC sequence. T1, T2, R1 and R2 maps were obtained by using MAGiC sequence with phantom (1.0, 0.6, 0.2, 0 mM) on the RF coil with channel number of 1, 8, 16 and 32 respectively. T1, T2, R1, R2 values and relaxation rates were measured for each channel number and concentration, and Relaxivity was calculated according to each concentration. T1, T2, R1, and R2 values were measured in each coil. There was no significant difference between T1 and R1 values (p> 0.05). However, T2 and R2 values were significantly different (p <0.05). In the post-analysis results, T2 value was significantly different from that measured on 1, 8, 16, and 32 channel coils (p <0.05) and There was no difference between 8, 16, and 32 channel coils (p> 0.05). The R2 value was significantly different from that measured on the 8, 16, and 32 channel coils in the 1 channel coil, and the results on the 8 channel coils and the 16 channel coils showed a significant difference (P <0.05). In conclusion, T1 and R1 values were not significantly different according to the number of channels in the coil, but T2 and R2 values were significantly different. Therefore, when quantitative measurement of T2 and R2 values using the MAGiC sequence, the same number of coils should be used for reproducibility.

The Comparative Imaging Study on Mn-phthalocyanine and Mangafodipir trisodium in Experimental VX2 Animal Model (실험적으로 유발시킨 VX2 동물모델에서의 Mn-phthalocyanine과 Mangafodipir trisodium의 비교영상)

  • Park Hyun-Jeong;Ko Sung-Min;Kim Yong-Sun;Chang Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2004
  • Purpose : To measure the NMR relaxation properties of MnPC, to observe the characteristics of liver enhancement patterns on MR images in experimentally implanted rabbit VX2 tumor model, and to estimate the possibility of tissue specific contrast agent for MnPC in comparison with the hepatobiliary agent. Materials and Methods : Phthalocyanine (PC) was chelated with paramagnetic ions, manganese (Mn). 2.01 g (5.2 mmol) of phthalocyanine was mixed with 0.37 g (1.4 nlmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography ($CHCl_3:\;CH_3OH=98:2$, volume ratio) to obtain 1.04 g $(46\%)$ of MnPC (molecular weight = 2000 daltons). The T1/T2 relaxivity (R1/R2) for MnPC were determined at a 1.5 T (64 MHz) MR spectrometer. VX2 tumor model was experimentally implanted in the liver parenchyma of rabbits. All MR studies were performed on 1.5 T. The human extremity radio frequency coil of a bird cage type was employed. MR images were acquired at 17 to 24 days after VX2 carcinoma implantation.4 mmol/kg MnPC and 0.01 mmol/kg Mn-DPDP were injected via the ear vein of rabbits. T1-weighted images were obtained with spin-echo (TR/TE=516/14 msec) and fast multiplanar spoiled gradient recalled (TR/TE : 80/4 msec, $60^{\circ}$ flip angle) pulse sequence. Fast spin-echo (TR/TE=1200/85 msec) was used to obtain the T2-weighted images. Results : The value of T1/T2 relaxivity (R1/R2) of MnPC was $7.28\;mM^{-1}S^{-1}$ and $55.56\;mM^{-1}S^{-1}$ respectively at 1.5 T (64 MHz). Because the T2 relaxivity of MnPC that bonded strongly, covalently manganese with phthalocyanine was very high, the signal intensity of liver parenchyma was decreased on postcontrast T2-weighted images and we could easily distinguish the VX2 carcinoma within the liver parenchyma. When MnPC was administrated intravenously, the tumor margin delineation was more remarkable than Mn-DPDP-enhanced images. The enhancement of liver parenchyma with MnPC persisted at relatively high levels over at least one hour after injection of the contrast agents. Conclusion : The hepatic uptake and biliary excretion of MnPC, which are similar to Mn-DPDP, suggest that this agent is a new liver-specific agent. Also, MnPC seems to be used as a dual contrast agent (T1 and T2) with high T2 relaxivity. However, it is warranted that MnPC needs further investigation as a potential contrast agent for MR imaging of the liver. That is, further characterizations of MnPC are needed in vivo and in vitro before clinical trials. The diagnostic potential of MnPC will also have to be examined more in the animal models of additional types.

  • PDF

A Systematic Study on MR Contrast Agents for Constructing Specific Relaxation Times

  • Cho, Jang-Geun;Cho, Jee-Hyun;Lee, Chul-Hyun;Ahn, Sang-Doo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • The water proton relaxation rates increase linearly with concentrations of contrast agents, and could be expressed as a function of the concentrations. In this paper, we have investigated MR properties of two different contrast agents, $GdCl_3$ and $CoCl_2$. Relaxivity coefficients were calculated from individual contrast agent solutions, and used for predicting relaxation rates at mixtures of two contrast agents. From the experimental results, we have discussed the feasibility of constructing water solutions with the desired relaxation times using specific mixtures of contrast agents.

The Molecular Weight Dependance of Paramagnetic Gd-chelates on T1 and T2 Relaxation Times (상자성 복합체의 분자량에 따른 T1 및 T2 자기이완시간에 관한 연구)

  • Kim In-Sung;Lee Young-Ju;Kim Ju-Hyun;Sujit Dutta;Kim Suk-Kyung;Kim Tae-Jeong;Kang Duk-Sik;Chang Yong-Min
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.61-66
    • /
    • 2006
  • To evaluate the T1, T2 magnetic relaxation properties of water molecule according to molecular weight of paramagnetic complex. 4-aminomethyicyclohexane carboxylic acid (0.63 g, 4 mmol) was mixed with the suspension solution of DMF (15 ml) and DTPA-bis-anhydride (0.71 g, 2 mmol) to synthesize the ligand. The ligand was then mixed with $Gd_2O_3$ (0.18 g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1 mM and then the relaxation times were measured at 1.57 (64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG (Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. In case of inversion recovery sequence, total 35 images with different inversion time(T1)s ranging from 50 msec to 1,750 msec. To estimate the relaxation times, the signal intensity of each sample was measured using region of Interest (ROI) and then fitted by non-linear least square method to yield T1, T2 relaxation times and also R1 and R2. Compared to T1=($205.1{\pm}2.57$) msec and T2=($209.4{\pm}4.28$) msec of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, T1 and T2 values of new paramagnetic complexes were reduced along with their molecular weight. That is, T1 value was ranged from $(96.35{\pm}2.04)\;to\;(79.38{\pm}1.55)$ msec and T2 value was ranged from $(91.02{\pm}2.08)\;to\;(76.66{\pm}1.84)$ msec. Among new paramagnetic complexes, there is a tendency that the R1 and R2 increase as the molecular weight is increases. As molecular weight of paramagnetic complex increases, T1 and T2 relaxation times reduce and thus the increase of relaxivity (R1 and R2) Is proportional to molecular weight.

  • PDF

Investigation of the Characteristics of New, Uniform, Extremely Small Iron-Based Nanoparticles as T1 Contrast Agents for MRI

  • Young Ho So;Whal Lee;Eun-Ah Park;Pan Ki Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1708-1718
    • /
    • 2021
  • Objective: The purpose of this study was to evaluate the magnetic resonance (MR) characteristics and applicability of new, uniform, extremely small iron-based nanoparticles (ESIONs) with 3-4-nm iron cores using contrast-enhanced magnetic resonance angiography (MRA). Materials and Methods: Seven types of ESIONs were used in phantom and animal experiments with 1.5T, 3T, and 4.7T scanners. The MR characteristics of the ESIONs were evaluated via phantom experiments. With the ESIONs selected by the phantom experiments, animal experiments were performed on eight rabbits. In the animal experiments, the in vivo kinetics and enhancement effect of the ESIONs were evaluated using half-diluted and non-diluted ESIONs. The between-group differences were assessed using a linear mixed model. A commercially available gadolinium-based contrast agent (GBCA) was used as a control. Results: All ESIONs showed a good T1 shortening effect and were applicable for MRA at 1.5T and 3T. The relaxivity ratio of the ESIONs increased with increasing magnetic field strength. In the animal experiments, the ESIONs showed peak signal intensity on the first-pass images and persistent vascular enhancement until 90 minutes. On the 1-week follow-up images, the ESIONs were nearly washed out from the vascular structures and organs. The peak signal intensity on the first-pass images showed no significant difference between the non-diluted ESIONs with 3-mm iron cores and GBCA (p = 1.000). On the 10-minutes post-contrast images, the non-diluted ESIONs showed a significantly higher signal intensity than did the GBCA (p < 0.001). Conclusion: In the phantom experiments, the ESIONs with 3-4-nm iron oxide cores showed a good T1 shortening effect at 1.5T and 3T. In the animal experiments, the ESIONs with 3-nm iron cores showed comparable enhancement on the first-pass images and superior enhancement effect on the delayed images compared to the commercially available GBCA at 3T.

Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR

  • Kim, Hee-Kyung;Lee, Gang-Ho;Kim, Tae-Jeong;Chang, Yong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.849-852
    • /
    • 2009
  • The work describes EPR and 17O NMR measurements followed by theoretical calculation of the rotational correlation time $({\tau}_R)$, the water residence time $({\tau}_m)$, and the longitudinal electronic spin relaxation time $(T_{le})$(T_1e) for two new gadolinium complexes 1 and 2 of the type [$Gd(L)(H_2O)$] (L = tranexamic esters) in order to investigate their efficiency as a paramagnetic contrast agent (PCA). Of three correlation times, τR plays a major and predominant role to the unusually high relaxivity of 1 and 2 as compared with that of clinically approved MR CAs such as [$Gd(DTPA)(H_2O)]2‐ (Magnevist${\circledR}$), [Gd(DTPA-BMA)(H2O)] (Omniscan${\circledR}$), and $[Gd(DOTA)(H_2O)]^-$ (Dotarem${\circledR}$). The presence of bulky tranexamic ester in the ligand seems to be responsible for the conformational rigidity, which in turn causes such great an increase in ${\tau}_R$.

Scolytidae, Platypodidae, Bostrichidae and Lyctidae Intercepted from Imported Timbers at Busan Port Entry (부산항의 수입재에서 검출된 나무좀과, 긴나무좀과, 개나무좀과 및 가루나무좀과의 종류)

  • 최은정;추호렬;이동운;이상명;박종균
    • Korean journal of applied entomology
    • /
    • v.42 no.3
    • /
    • pp.173-184
    • /
    • 2003
  • Beetles belonging to the families Scolytidae, Platypodidae, Bostrichidae, and Lyctidae intercepted from imported timbers at Busan port were investigated from March 1 to November 30 in 2000. In addition, hosts imported country were examined. A total of 52 species of within 23 genera was intercepted from nineteen species of timbers or logs from fifteen countries. In Scolytidae, 35 species of 16 genera in three subfamilies were identified 12 species in Xyleborus, 6 species in Ips, 3 species in Trypodendron, 2 species in Arixyleborus, and 12 species of all different genera including Alinphagous. Scolytidae were intercepted from 16 species of timbers in 13 genera imported from 11 countries. The highest beetles were intercepted from Malaysian lauan. In Platypodidae, 9 species of one genus (Platypus) were intercepted from 6 species of timbers in 4 genera imported from 6 countries including Australia. The highest numbers were intercepted from Malysian lauan. In Bostrychidae, 5 species of 4 genera in two subfamilies were intercepted from 6 species of timbers in 4 genera imported from four countries. In Lyctidae, Trogoxylon sp., Minthea sp., and Minthea rugicollis were intercepted from 3 species of timbers in 2 genera imported from 3 countries.

The Magnetic Relaxation Properties of DTPA-bis(4-carboxycyclohexyl) amide Paramagnetic Gd-chelates (DTPA-bis(4-carboxycyclohexyl)amide 상자성 복합체의 자기이완특성에 관한 연구)

  • Kim, In-Sung;Lee, Young-Ju;Lee, Jae-Jun;Kim, Ju-Hyun;Kim, Yoo-Kyung;Sujit, Dutta;Kim, Suk-Kyung;Kim, Tae-Jeong;Kang, Duk-Sik;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2006
  • Purpose : To evaluate the NMR relaxation properties of newly developed high performance paramagnetic complexes. Materials and methods : 4-aminomethylcyclohexane carboxylic acid (0.63g, 4 mmol) was mixed with the suspension solution of DMF (15mL) and DTPA-bis-anhydride (0.71g, 2 mmol) to synthesize the ligand. The ligand was then mixed with Gd2O3 (0.18g, 0.5 mmol) to synthesize Gd-chelate. For the measurement of magnetic relaxivity of paramagnetic compounds, the compounds were diluted to 1mM and then the relaxation times were measured at 1.5T(64 MHz). Inversion-recovery pulse sequence was employed for T1 relaxation measurement and CPMG(Carr-Purcell-Meiboon-Gill) pulse sequence was employed for T2 relaxation measurement. Using MATLAB(Version 7.1) program, T1 magnetic relaxation map, R1 map, T2 magnetic relaxation map and R2 map were developed to represent magnetic relaxation time and magnetic relaxivity as image. Results : Compared to $R1=4.9mM^{-1}sec^{-1}$ and $R2=4.8mM^{-1}sec^{-1}$ of Omniscan (Gadodiamide), which is commercially available paramagnetic MR agent, R1 of SUK090(Gd-C32H74N5O24) was $12.46mM^{-1}sec^{-1}$ and R1 of SUK091(Gd-C34H78N5O24) was $12.77mM^{-1}sec^{-1}$. However, R1 of SUK092(Gd-C30H56N5O17) was decreased to $2.09mM^{-1}sec^{-1}$. In case of R2, SUK090(Gd-C32H74N5O24) was $8.76mM^{-1}sec^{-1}$ and SUK091(Gd-C34H78N5O24) was $7.60mM^{-}1sec^{-1}$ whereas SUK092(Gd-C30H56N5O17) was decreased to $1.82mM^{-1}sec^{-1}$. Conclusion : Among three new paramagnetic complexes, SUK090(Gd-C32H74N5O24) and SUK091(Gd-C34H78N5O24) showed higher T1, T2 magnetic relaxation rates than that of commercially available paramagnetic MR agent and thus expected to have more contrast enhancement effect.

  • PDF